
Chapter 6: Probability and Naive Bayes

Naïve Bayes

Let us return yet again to our women athlete example. Suppose I ask you what sport Brittney
Griner participates in (gymnastics, marathon running, or basketball) and I tell you she is 6
foot 8 inches and weighs 207 pounds. I imagine you would say basketball and if I ask you
how confident you feel about your decision I imagine you would say something along the
lines of “pretty darn confident.”

Now I ask you what sport Heather Zurich (pictured
on the right) plays. She is 6 foot 1 and weighs 176
pounds. Here I am less certain how how will answer.
You might say ‘basketball’ and I ask you how
confident you are about your prediction. You
probably are less confident than you were about your
prediction for Brittney Griner. She could be a tall
marathon runner.

Finally, I ask you about what sport Yumiko Hara
participates in; she is 5 foot 4 inches tall and weighs
95 pounds. Let's say you say ‘gymnastics’ and I ask
how confident you feel about your decision. You will
probably say something along the lines of “not too
confident.” A number of marathon runner have
similar heights and weights.

With the nearest neighbor algorithms, it is difficult to
quantify confidence about a classification. With
classification methods based on probability—

Bayesian methods—we can not only make a classification but we can make probabilistic
classifications—this athlete is 80% likely to be a basketball player, this patient has a 40%
chance of getting diabetes in the next five years, the probability of rain in Las Cruces in the
next 24 hours is 10%.

Nearest Neighbor approaches are called
lazy learners. They are called this
because when we give them a set of
training data, they just basically save—
or remember—the set. Each time it
classifies an instance, it goes through
the entire training dataset. If we have
a 100,000 music tracks in our
training data, it goes through the
entire 100,000 tracks each time it
classifies an instance.

Bayesian methods are called eager
learners. When given a training set
eager learners immediately analyze the
data and build a model. When it wants
to classify an instance it uses this
internal model. Eager learners tend to
classify instances faster than lazy
learners.

The ability to make probabilistic classifications, and the fact that they are eager learners
are two advantages of Bayesian methods.

6-2

Probability
I am assuming you have some basic knowledge of probability. I flip a coin; what is the
probably of it beings a 'heads'? I roll a 6 sided fair die, what is the probability that I roll a '1'?
that sort of thing. I tell you I picked a random 19 year old and have you tell me the probability
of that person being female and without doing any research you say 50%. These are example
of what is called prior probability and is denoted P(h)—the probability of hypothesis h.

Suppose I give you some additional information about that 19 yr. old—the person is a student
at the Frank Lloyd Wright School of Architecture in Arizona. You do a quick Google search,
see that the student body is 86% female and revise your estimate of the likelihood of the
person being female to 86%.

This we denote as P(h|D) —the probability of the hypothesis h given some data D. For
example:

So for a coin:

P(heads) = 0.5

For a six sided dice, the probability of rolling a ‘1’:

P(1) = 1/6

If I have an equal number of 19 yr. old male and
females →

P(female) = .5

P(female | attends Frank Lloyd Wright School) = 0.86

which we could read as “The probability the person is female given
that person attends the Frank Lloyd Wright School is 0.86

PROBABILITY AND NAÏVE BAYES

6-3

The formula is

 P(A | B) =
P(A∩ B)
P(B)

An example.

In the following table I list some people and the types of laptops and phones they have:

6-4

name laptop phone

Kate PC Android

Tom PC Android

Harry PC Android

Annika Mac iPhone

Naomi Mac Android

Joe Mac iPhone

Chakotay Mac iPhone

Neelix Mac Android

Kes PC iPhone

B’Elanna Mac iPhone

What is the probability that a randomly
selected person uses an iPhone?

There are 5 iPhone users out of 10 total users so

P(iPhone) = 5
10

= 0.5

What is the probability that a randomly selected
person uses an iPhone given that person uses a
Mac laptop?

P(iPhone |mac) = P(mac∩ iPhone)
P(mac)

First, there are 4 people who use both a Mac and
an iPhone:

P(mac∩ iPhone) = 4
10

= 0.4

and the probability of a random person using a
mac is

P(mac) = 6
10

= 0.6

So the probability of that some person uses an iPhone given that person uses a Mac is

P(iPhone |mac) = 0.4
0.6

= 0.667

That is the formal definition of posterior probability. Sometimes when we implement this we
just use raw counts:

P(iPhone|mac) =

P(iPhone |mac)= 4
6
= 0.667

s sharpen your pencil

What’s the probability of a person owning
a mac given that they own an iPhone

i.e., P(mac|iPhone)?

PROBABILITY AND NAÏVE BAYES

6-5

number of people who use a mac and an iPhone

number of people who use a mac

tip

If you feel you need practice with basic probabilities please see the links to
tutorials at guidetodatamining.com.

Some terms:
P(h), the probability that some hypothesis h is true, is called the prior probability of h.
Before we have any evidence, the probability of a person owning a Mac is 0.6 (the evidence
might be knowing that the person also owns an iPhone).

P(h|d) is called the posterior probability of h. After we observe some data d what is the
probability of h? For example, after we observe that a person owns an iPhone, what is the
probability of that same person owning a Mac? It is also called conditional probability.

In our quest to build a Bayesian Classifier we will need two additional probabilities, P(D) and
P(D|h). To explain these consider the following example.

s sharpen your pencil — solution

What’s the probability of a person owning
a mac given that they own an iphone

i.e., P(mac|iPhone)?

P(mac | iPhone) = P(iPhone∩mac)
P(iPhone)

= 0.4
0.5

= 0.8

6-6

Microsoft Shopping Cart
Did you know that Microsoft makes smart grocery store shopping carts? Yep, they do. Well,
actually, Microsoft has contracted with a company called Chaotic Moon to develop them.
Chaotic Moon’s slogan is We are smarter than you. We are more creative than you. You can
decide whether they are arrogant, cheeky, or something else. Anyway, the cart combines a
shopping cart with a Windows 8 tablet, a Kinect, a Bluetooth speaker (so the cart can talk to
you), and a mobile robotics platform (so the cart can follow you around the store).

You come in with your grocery store loyalty card. The cart recognizes you. It has recorded all
previous purchases (as well as the purchases of everyone else in the store).

Suppose the cart software wants to
determine whether to show you a
targeted ad for Japanese Sensha
Green Tea. It only wants to show
that ad if you are likely to purchase
the tea.

The cart system has accumulated
the small dataset shown on the next
page from other shoppers

P(D) is the probability that some training data will be observed. For example, looking on the
next page we see that the probability that the zip code will be 88005 is 5/10 or 0.5.

 P(88005) = 0.5

P(D|h) is the probability that some data value holds given the hypothesis. For example, the
probability of the zip code being 88005 given that the person bough Sencha Green Tea or
P(88005|Sencha Tea).

PROBABILITY AND NAÏVE BAYES

6-7

Zipcodes are a set
of postal codes
used in the U.S.

In this case we are looking at all the instances where the person bought Sensha Tea. There
are 5 such instances. Of those, 3 are with the 88005 zip code.

P(88005 | SenchaTea) = 3
5
= 0.6

s sharpen your pencil

What’s the probability of the zip code being 88005 given that the person did
not buy Sencha tea?

6-8

Customer
ID

Zipcode bought organic
produce?

bought Sencha
green tea?

1 88005 Yes Yes

2 88001 No No

3 88001 Yes Yes

4 88005 No No

5 88003 Yes No

6 88005 No Yes

7 88005 No No

8 88001 No No

9 88005 Yes Yes

10 88003 Yes Yes

s sharpen your pencil — solution

What’s the probability of the zip code being 88005 given that the person did
not buy Sencha tea?

There are 5 occurrences of a person not buying Sencha tea. Of those, 2 lived in
the 88005 zip code. So

P(88005 |¬SenchaTea) = 2
5
= 0.4

s sharpen your pencil

This is key to understanding the rest of the chapter so let us practice just a bit
more.

1. What is the probability of a person being in the 88001 zipcode (without
knowing anything else)?

2. What is the probability of a person being in the 88001 zipcode knowing that
they bought Sencha tea?

3. What is the probability of a person being in the 88001 zipcode knowing that
they did not buy Sencha tea?

PROBABILITY AND NAÏVE BAYES

6-9

That ¬ symbol means ‘not’.

s sharpen your pencil — solution

This is key to understanding the rest of the chapter so let us practice just a bit
more.

1. What is the probability of a person being in the 88001 zipcode (without
knowing anything else)?

There are 10 total entries in our database and only 3 of them are from
88001 so P(88001) is 0.3

2. What is the probability of a person being in the 88001 zipcode knowing that
they bought Sencha tea?
There are 5 instances of buying Sencha tea and only 1 of them is from the
88001 zipcode so

P(88001| SenchaTea) = 1
5
= 0.2

3. What is the probability of a person being in the 88001 zipcode knowing that
they did not buy Sencha tea?
There are 5 instances of not buying Sencha tea and 2 of them are from the
88001 zipcode:

P(88001|¬SenchaTea) = 2
5
= 0.4

6-10

Bayes Theorem
Bayes Theorem describes the relationship between P(h), P(h|D), P(D), and P(D|h):

This theorem is the cornerstone of all Bayesian methods. Usually in data mining we use this
theorem to decide among alternative hypotheses. Given the evidence, is the person a
gymnast, marathoner, or basketball player. Given the evidence, will this person buy Sencha
tea, or not. To decide among alternatives we compute the probability for each hypothesis. For
example,

PROBABILITY AND NAÏVE BAYES

6-11

P(h |D) = P(D | h)P(h)
P(D)

We want to display an ad for Sencha Tea on our smart shopping cart display only
if we think that person is likely to buy the tea. We know that person lives in the
88005 zipcode.

There are two competing hypotheses:

 The person will buy Sencha tea.
 We compute P(buySenchaTea|88005)

 The person will not buy Sencha tea.
 We compute P(¬buySenchaTea|88005)

We pick the hypothesis with the highest probability!

So if P(buySenchaTea|88005) = 0.6 and

P(¬buySenchaTea|88005) = 0.4

So it is more likely that the person will buy the tea so we will display the ad.

Suppose we work for an electronics store and we have three sales flyers in email form. One
flyer features a laptop, another features a desktop and the final flyer a tablet. Based on what
we know about each customer we will email that customer the flyer that will most likely
generate a sale. For example, I may know that a customer lives in the 88005 zipcode, that
she has a college age daughter living at home, and that she goes to yoga class. Should I send
her the flyer with the laptop, desktop, or tablet?

My hypotheses are which flyer is the best: laptop, desktop, tablet. So I compute:

And pick the hypothesis with the highest probability.

More abstractly, in a classification task we have a number of possible hypotheses:
h1, h2, ...hn. These hypotheses are the different categories of our task (for example, basketball
players, marathoners, gymnasts, or ‘will get diabetes’, ‘will not get diabetes’).

6-12

Let D represent all that I know about that
customer:
• lives in 88005 zipcode
• has college age daughter
• goes to yoga class

P(laptop |D) = P(D | laptop)P(laptop)
P(D)

P(desktop |D) = P(D | desktop)P(desktop)
P(D)

P(tablet |D) = P(D | tablet)P(tablet)
P(D)

Once we compute all these probabilities, we will pick the hypothesis with the highest
probability. This is called the maximum a posteriori hypothesis, or hMAP.

P(hn |D) =
P(D | hn)P(hn)

P(D)

PROBABILITY AND NAÏVE BAYES

6-13

P(h1 |D) =
P(D | h1)P(h1)

P(D)
P(h2 |D) =

P(D | h2)P(h2)
P(D),

...

Ok, I compute the probability
of each possible hypothesis and
select the hypothesis with the
highest probability. That
hypothesis is called the maximum
a posteriori hypothesis!

That’s right! You got it!

We can translate that English description of calculating the maximum a posteriori hypothesis
into the following formula:

hMAP = argmaxh∈H P(h |D)

H is the set of all the hypotheses. So h∈H means “for every hypothesis in the set of
hypotheses.” The full formula means something like “for every hypothesis in the set of
hypotheses compute P (h|D) and pick the hypothesis with the largest probability.” Using
Bayes Theorem we can convert that formula to:

hMAP = argmaxh∈H
P(D | h)P(h)

P(D)

So for every hypothesis we are going to compute:

P(D | h)P(h)
P(D)

You might notice that for all these calculations, the denominators are identical—P(D). Thus,
they are independent of the hypotheses. If a specific hypothesis has the max probability with
the formula used above, it will still be the largest if we did not divide all the hypotheses by
P(D). If our goal is to find the most likely hypothesis, we can simplify our calculations:

hMAP = argmaxh∈H P(D | h)P(h)

To see how this works, we will use an example from Tom M. Mitchell’s book, Machine
Learning. Tom Mitchell is chair of the Machine Learning Department at Carnegie Mellon
University. He is a great researcher and an extremely nice guy. On to the example from the
book. Consider a medical domain where we want to determine whether a patient has a
particular kind of cancer or not. We know that only 0.8% of the people in the U.S. have this
form of cancer. There is a simple blood test we can do that will help us determine whether
someone has it. The test is a binary one—it comes back either POS or NEG. When the disease is
present the test returns a correct POS result 98% of the time; it returns a correct NEG result
97% of the time in cases when the disease is not present.

6-14

s sharpen your pencil
Let’s translate what I wrote above into probability notation. Please match
up the English statements below with their associated notations and write in the
probabilities. If there is no English statement matching a probability, please
write one.

PROBABILITY AND NAÏVE BAYES

6-15

Our hypotheses:

• The patient has the particular cancer
• The patient does not have that particular

cancer.

We know that only 0.8% of the people
in the U.S. have this form of cancer.

When the disease is present the test
returns a correct POS result 98% of the
time;

it returns a correct NEG result 97% of
the time in cases when the disease is
not present

P(POS|cancer) = _______

P(POS|¬cancer) = _______

P(cancer) = _______

P(¬cancer) = _______

P(NEG|cancer) = _______

P(NEG|¬cancer) = _______

s sharpen your pencil — solution

6-16

We know that only 0.8% of the people
in the U.S. have this form of cancer.

99.2% of people don’t have this
cancer

When the disease is present the test
returns a correct POS result 98% of
the time;

When the disease is present the test
returns a incorrect NEG result 2% of

it returns a correct NEG result 97%
of the time in cases when the disease
is not present

it returns an incorrect POS result 3% of
the time in cases when the disease is not
present

P(POS|cancer) = 0.98

P(POS|¬cancer) = 0.03

P(cancer) = 0.008

P(¬cancer) = 0.992

P(NEG|cancer) = 0.02

P(NEG|¬cancer) = 0.97

s sharpen your pencil — solution

Suppose Ann, comes into the doctor's office

A blood test for cancer is given and the test
result is POS.

This is not looking good for Ann. After all, the test
is 98% accurate.

Using Bayes Theorem determine whether it is
more likely that Ann has cancer or that she does
not.

PROBABILITY AND NAÏVE BAYES

6-17

P(cancer) = 0.008

P(¬cancer) = 0.992

P(POS|cancer) = 0.98

P(POS|¬cancer) = 0.03

P(NEG|cancer) = 0.02

P(NEG|¬cancer) = 0.97

s sharpen your pencil — solution

Suppose Ann, comes into the doctor's office
A blood test for the cancer is given and the test result is POS.

This is not looking good for Ann. After all, the test is 98% accurate.

Using Bayes Theorem determine whether it is more likely that Ann has cancer or that
she does not.

We are finding the maximum a posteriori probability:

P(POS | cancer)P(cancer) = .98(.008) = .0078

P(POS | ¬ cancer) P(¬ cancer) = .03(.992) = .0298

We select hMAP and classify the patient as not having cancer.

If we want to know the exact probability we can normalize these values by having them
sum to 1:

P(cancer | POS) = 0.0078
0.0078 + 0.0298

= 0.21

Ann has a 21% chance of having cancer.

6-18

Here is why the results seem so
counterintuitive. Most people see the statistic
that 98% of the people who have this
particular cancer will have a positive test
result and also conclude that 98% of the
people who have a positive test result have
this particular cancer. This fails to take into
account that this cancer affects only 0.8% of
the population. Let’s say we give the test to
everyone in a city of 1 million people. That
means that 8,000 people have cancer and
992,000 do not. First, let’s consider giving the test to the 8,000 people with cancer. We
know that 98% of the time when we give the test to people with cancer the test correctly
returns a positive result. So 7,840 people have a correct positive result and 160 of those
people with cancer have an incorrect negative result. Now let’s turn to the 992,000 people
without cancer. When we give the test to them, 97% of the time we get a correct negative
result so (992,000 * 0.97) or 962,240 of them have a correct negative result and 30,000 have
an incorrect positive result. I have summarized these results on the following page.

PROBABILITY AND NAÏVE BAYES

6-19

You may think “That just doesn’t make
sense. After all, the test is 98% accurate,
but yet you re telling me Ann is most likely
not to have cancer. “

You are in good company. 85% of medical
doctors get the answer wrong as well.

I just didn’t make that 85% number up.
See, among others,

Casscells, W., Schoenberger, A., and Grayboys, T.

(1978): "Interpretation by physicians of clinical

laboratory results." N Engl J Med. 299:999-1001.

Gigerenzer, Gerd and Hoffrage, Ulrich (1995): "How to improve Bayesian reasoning without instruction: Frequency formats." Psychological Review. 102: 684-704.

Eddy, David M. (1982): "Probabilistic reasoning
in clinical medicine: Problems and
opportunities." In D. Kahneman, P. Slovic, and A.
Tversky, eds, Judgement under uncertainty:
Heuristics and biases. Cambridge University
Press, Cambridge, UK.

positive test result negative test result

people with cancer 7,840 160

people without cancer 30,000 962,240

Now, consider Ann getting a positive test result and the data in the ‘positive test result’
column. 30,000 of the people with a positive test result had no cancer while only 7,840 of
them had cancer. So it seems probable that Ann does not have cancer.

Why do we need Bayes Theorem?
Yet again, Bayes Theorem is

P(h |D) = P(D | h)P(h)
P(D)

Let us return to the shopping cart example
presented earlier. In that example, we
obtained the information on the right from
customers.
Say we know a customer lives in the
88005 zipcode and our two competing
hypotheses are that they will buy Sencha
tea or they will not. So:

P(h1|D) = P(buySenchaTea|88005)

and

P(h2|D) = P(¬ buySenchaTea|88005)

Customer
ID

Zipcode bought
organic
produce?

bought
Sencha

green tea?

1 88005 Yes Yes

2 88001 No No

3 88001 Yes Yes

4 88005 No No

5 88003 Yes No

6 88005 No Yes

7 88005 No No

8 88001 No No

9 88005 Yes Yes

10 88003 Yes Yes

6-20

Still don’t get it?
Don’t worry. Many people don’t.
After more practice you will gain a better understanding.

In this case you may wonder why we need to compute

P(88005 | buySenchaTea)P(buySenchaTea)
P(88005)

when we can just as easily compute P(buySenchaTea|88005) directly from the data in the
table. In this simple case you would be correct but for many real world problems it is very
difficult to compute P(h|D) directly.

Consider the previous medical example where we were interested in determining whether a
person had cancer or not given that a certain test returned a positive result.

P(cancer | POS) ≈ P(POS | cancer)P(cancer)

P(¬cancer | POS) ≈ P(POS |¬cancer)P(¬cancer)

It is relatively easy to compute the items on the right hand side. We can estimate
P(POS|cancer) by giving the cancer test to a representative sample of people with cancer and
P(POS|¬ cancer) by giving the test to a sample of people without cancer. P(cancer) seems like
a statistic that would be available on government websites and P(¬ cancer) is simply

1 - P(cancer)

 However, computing P(cancer|POS) directly would be significantly more challenging. This is
asking us to determine the probability that when we give the test to a random average person
in the entire population and the test result is POS then that person has cancer. To do this we
want a representative sample of the population but since only 0.8% of people have cancer a
sample size of 1,000 people would only have 8 people with cancer—far too few to feel that
our counts are representative of the population as a whole. So we would need an extremely
large sample size. So Bayes Theorem provides a strategy for computing P(h|D) when it is
hard to do so directly.

PROBABILITY AND NAÏVE BAYES

6-21

Naïve Bayes
Most of the time we have more evidence than just a single piece of data. In the Sencha tea
example we had two types of evidence: zip code and whether the person purchased organic
food. To compute the probability of an hypothesis given all the evidence, we simply multiply
the individual probabilities. In this example

We would like to know whether a person
who lives in the 88005 zipcode and
bought organic produce will likely buy tea:

P(tea|88005 & organic) and for that we simply multiply the probabilities:

P(tea|88005 & organic) = P(88005 | tea) P(organic | tea) P(tea) = .6(.8)(.5) = .24

P(¬tea|88005 & organic) = P(88005 |¬tea) P(organic |¬tea) P(¬tea) = .4(.25)(.5) = .05

So a person who lives in the trendy 88005 zip code area and buys organic food is more likely
to buy Sencha Green tea than not. So let's display the Green Tea ad on the shopping cart
display!

Customer
ID

Zipcode bought
organic
produce?

bought
Sencha

green tea?

1 88005 Yes Yes

2 88001 No No

3 88001 Yes Yes

4 88005 No No

5 88003 Yes No

6 88005 No Yes

7 88005 No No

8 88001 No No

9 88005 Yes Yes

10 88003 Yes Yes

6-22

Code:

tea = Person buy Sencha tea

¬ tea = Person does not buy
Sencha tea

P(88005|tea) = probability that
a person lives in the 88005
zipcode given that person bought
Sencha tea.

etc.

Here's how Stephen Baker describes the smart shopping cart technology:

… here's what shopping with one of these carts might feel like. You grab a cart on
the way in and swipe your loyalty card. The welcome screen pops up with a
shopping list. It's based on patterns of your last purchases. Milk, eggs, zucchini,
whatever. Smart systems might provide you with the quickest route to each item.
Or perhaps they'll allow you to edit the list, to tell it, for example, never to
promote cauliflower or salted peanuts again. This is simple stuff. But according to
Accenture's studies, shoppers forget an average of 11 percent of the items they
intend to buy. If stores can effective remind us of what we want, it means fewer
midnight runs to the convenience store for us and more sales for them.

 Baker. 2008. P49.

PROBABILITY AND NAÏVE BAYES

6-23

The Numerati
I've mentioned this book by Stephen Baker several times. I highly
encourage you to read this book. The paperback is only $10 and it
is a good late night read.

i100 i500
Let's say we are trying to help iHealth, a
company that sells wearable exercise
monitors that compete with the Nike Fuel
and the Fitbit Flex. iHealth sells two models
that increase in functionality: the i100 and
the i500:

They sell these online and they hired us to come up with a recommendation system for their
customers. To get data to build our system when someone buys a monitor, we ask them to
fill out the questionnaire. Each question in the questionnaire relates to an attribute. First, we
ask them what their main reason is for starting an exercise program and have them select
among three options: health, appearance or both. We ask them what their current exercise
level is: sedentary, moderate, or active. We ask them how motivated they are: moderate or
aggressive. And finally we ask them if they are comfortable with using technological devices.
Our results are as follows.

6-24

iHealth100:
heart rate, GPS (to compute miles per
hour, etc), wifi to automatically connect
to iHealth website to upload data.

iHealth500:
i100 features + pulse oximetry (oxygen
in blood) + free 3G connection to
iHealth website

Main Interest Current
Exercise Level

How Motivated Comfortable
with tech.
Devices?

Model #

both sedentary moderate yes i100

both sedentary moderate no i100

health sedentary moderate yes i500

appearance active moderate yes i500

appearance moderate aggressive yes i500

appearance moderate aggressive no i100

health moderate aggressive no i500

both active moderate yes i100

both moderate aggressive yes i500

appearance active aggressive yes i500

both active aggressive no i500

health active moderate no i500

health sedentary aggressive yes i500

appearance active moderate no i100

health sedentary moderate no i100

s sharpen your pencil

Using the naïve Bayes method, which model would you recommend to a person whose
 main interest is health
 current exercise level is moderate
 is moderately motivated
 and is comfortable with technological devices

Turn the page if you need a hint!

PROBABILITY AND NAÏVE BAYES

6-25

s sharpen your pencil clue

Ok. So we want to compute

P(i100 | health, moderateExercise, moderateMotivation, techComfortable)

and

P(i500 | health, moderateExercise, moderateMotivation, techComfortable)

and pick the model with the highest probability.

Let me lay out what we need to do for the first one:

P(i100 | health, moderateExercise, moderateMotivation, techComfortable) =

P(health|i100) P(moderateExercise|i100) P(moderateMotivated|i100)
 P(techComfortable|i100)P(i100)

So here is what we need to first compute

P(health|i100) = 1/6

P(moderateExercise|i100) =

P(moderateMotivated|i100) =

P(techComfortable|i100) =

P(i100) = 6 / 15

That was my clue. Now hopefully you can figure out the example

6-26

There were 6 occurrences of people buying
i100s and only one of those people had a main
interest of ‘health’

s sharpen your pencil solution

First we compute

P(i100 | health, moderateExercise, moderateMotivation, techComfortable)

which equals the product of all these terms:

P(health|i100) P(moderateExercise|i100) P(moderateMotivated|i100)
 P(techComfortable|i100)P(i100)

P(health|i100) = 1/6
P(moderateExercise|i100) = 1/6
P(moderateMotivated|i100) = 5/6
P(techComfortable|i100) = 2/6
P(i100) = 6 / 15

so

P(i100| evidence) = .167 * .167 * .833 * .333 * .4 = .00309

Now we compute

P(i500 | health, moderateExercise, moderateMotivation, techComfortable)

P(health|i500) = 4/9
P(moderateExercise|i500) = 3/9
P(moderateMotivated|i500) = 3/9
P(techComfortable|i500) = 6/9
P(i500) = 9 / 15

P(i500| evidence) = .444 * .333 * .333 * .667 * .6 = .01975

PROBABILITY AND NAÏVE BAYES

6-27

both! ! sedentary! moderate! yes!i100both! ! sedentary! moderate! no! i100health! ! sedentary! moderate! yes!i500appearance! active! ! moderate! yes!i500appearance! moderate! aggressive! yes!i500appearance! moderate! aggressive! no! i100health! ! moderate! aggressive! no! i500both! ! active! ! moderate! yes!i100both! ! moderate! aggressive! yes!i500appearance! active! ! aggressive! yes!i500both! ! active! ! aggressive! no! i500health! ! active! ! moderate! no! i500health! ! sedentary! aggressive! yes!i500appearance! active! ! moderate! no! i100health! ! sedentary! moderate! no! i100

main interest

current exercise level

how motivated

comfortable with tech
devices?

which model

Doing it in Python
Great! Now that we understand how a Naïve Bayes Classifier works let us consider how to
implement it in Python. The format of the data files will be the same as that in the previous
chapter, a text file where each line consists of tab-separated values. For our iHealth example,
the data file would look like the following:

Shortly we will be using an example with substantially more data and I would like to keep the
ten-fold cross validation methods we used in code from the previous chapter. Recall that that
method involved dividing the data into ten buckets (files). We would train on nine of them
and test the classifier on the remaining bucket. And we would repeat this ten times; each
time withholding a different bucket for testing. The simple iHealth example, with only 15
instances, was designed so we could work through the Naïve Bayes Classifier method by
hand. With only 15 instances it seems silly to divide them into 10 buckets. The ad hoc, not
very elegant solution we will use, is to have ten buckets but all the 15 instances will be in one
bucket and the rest of the buckets will be empty.

6-28

The Naïve Bayes Classifier code consists of two components, one for training and one for
classifying.

Training

I am going to represent the set of prior probabilities as a Python dictionary (hash table):

self.prior = {'i500': 0.6, 'i100': 0.4}

The conditional probabilities are a bit more complex. My way of doing this—and there are
probably better methods—is to associate a set of conditional probabilities with each class.

{'i500': {1: {'appearance': 0.3333333333333, 'health': 0.4444444444444,
 'both': 0.2222222222222},
 2: {'sedentary': 0.2222222222222, 'moderate': 0.333333333333,
 'active': 0.4444444444444444},
 3: {'moderate': 0.333333333333, 'aggressive': 0.66666666666},
 4: {'no': 0.3333333333333333, 'yes': 0.6666666666666666}},

 'i100': {1: {'appearance': 0.333333333333, 'health': 0.1666666666666,
 'both': 0.5},
 2: {'sedentary': 0.5, 'moderate': 0.16666666666666,
 'active': 0.3333333333333},
 3: {'moderate': 0.83333333334, 'aggressive': 0.166666666666},
 4: {'no': 0.6666666666666, 'yes': 0.3333333333333}}}

The 1, 2, 3, 4 represent column numbers. So the first line of the above is “the probability of
the value of the first column being ‘appearance’ given that the device is i500 is 0.333.”

PROBABILITY AND NAÏVE BAYES

6-29

The output of training needs to be:
• a set of prior probabilities—for example,

P(i100) = 0.4
• a set of conditional probabilities—for

example, P(health|i100) = 0.167

The first step in computing these probabilities is simply to count things. Here are the first
few lines of the input file:

Yet again I am going to use
dictionaries. One, called, classes,
which will count the occurrences of
each class or category. So, after the
first line classes will look like

{'i100': 1}

After the second line:

{'i100': 2}

And after the third:

{'i500': 1, 'i100': 2}

After I process all the data, the value of classes is

{'i500': 9, 'i100': 6}

To obtain the prior probabilities I simply divide those number by the total number of
instances.

To determine the conditional probabilities I am going
to count the occurrences of attribute values in the
different columns in a dictionary called counts. and I
am going to maintain separate counts for each class.
So, in processing the string ‘both’ in the first line, counts will be:

{'i100': {1: {'both': 1}}

and at the end of processing the data, the value of counts will be

6-30

both! ! sedentary! moderate! yes!i100
both! ! sedentary! moderate! no! i100
health! ! sedentary! moderate! yes!i500
appearance! active! ! moderate! yes!i500

Counting things

Prior probability

Conditional probability

{'i100': {1: {'appearance':2, 'health': 1, 'both': 3},
 2: {'active': 2, 'moderate': 1, 'sedentary': 3},
 3: {'moderate': 5, 'aggressive': 1},
 4: {'yes': 2, 'no': 4}},
 'i500': {1: {'health': 4, 'appearance': 3, 'both': 2},
 2: {'active': 4, 'moderate': 3, 'sedentary': 2},
 3: {'moderate': 3, 'aggressive': 6},
 4: {'yes': 6, 'no': 3}}}

So, in the first column of the i100 instances there were 2 occurrences of ‘appearance’, 1 of
‘health’ and 3 of ‘both’. To obtain the conditional probabilities we divide those numbers by
the total number of instances of that class. For example, there are 6 instances of i100 and 2 of
them had a value of ‘appearance’ for the first column, so

P(‘appearance’|i100) = 2/6 = .333

With that background here is the Python code for training the classifier (remember, you can
download this code at guidetodatamining.com).

class BayesClassifier:
 def __init__(self, bucketPrefix, testBucketNumber, dataFormat):

 """ a classifier will be built from files with the bucketPrefix
 excluding the file with textBucketNumber. dataFormat is a
 string that describes how to interpret each line of the data
 files. For example, for the iHealth data the format is:
 "attr! attr! attr! attr! class"
 """

 total = 0
 classes = {}
 counts = {}

 # reading the data in from the file

 self.format = dataFormat.strip().split('\t')
 self.prior = {}
 self.conditional = {}

PROBABILITY AND NAÏVE BAYES

6-31

 # for each of the buckets numbered 1 through 10:
 for i in range(1, 11):
 #if it is not the bucket we should ignore, read in the data
 if i != testBucketNumber:
 filename = "%s-%02i" % (bucketPrefix, i)
 f = open(filename)
 lines = f.readlines()
 f.close()
 for line in lines:
 fields = line.strip().split('\t')
 ignore = []
 vector = []
 for i in range(len(fields)):
 if self.format[i] == 'num':
 vector.append(float(fields[i]))
 elif self.format[i] == 'attr':
 vector.append(fields[i])
 elif self.format[i] == 'comment':
 ignore.append(fields[i])
 elif self.format[i] == 'class':
 category = fields[i]
 # now process this instance
 total += 1
 classes.setdefault(category, 0)
 counts.setdefault(category, {})
 classes[category] += 1
 # now process each attribute of the instance
 col = 0
 for columnValue in vector:
 col += 1
 counts[category].setdefault(col, {})
 counts[category][col].setdefault(columnValue,0)
 counts[category][col][columnValue] += 1

6-32

 #
 # ok done counting. now compute probabilities
 #
 # first prior probabilities p(h)
 #
 for (category, count) in classes.items():
 self.prior[category] = count / total
 #
 # now compute conditional probabilities p(h|D)
 #
 for (category, columns) in counts.items():
 self.conditional.setdefault(category, {})
 for (col, valueCounts) in columns.items():
 self.conditional[category].setdefault(col, {})
 for (attrValue, count) in valueCounts.items():
 self.conditional[category][col][attrValue] = (
 count / classes[category])

Classifying
Okay, we have trained the classifier. Now we want to classify various instances. For example,
which model should we recommend for someone whose primary interest is health is
moderately active, moderately motivated, and is comfortable with technology:

c.classify(['health', 'moderate', 'moderate', 'yes'])

For this we need to compute

hMAP = argmaxh∈H P(D | h)P(h)

PROBABILITY AND NAÏVE BAYES

6-33

That’s it for training! No Complex math.
Just basic counting!!!

When we did this by hand we computing the probability of each hypothesis given the
evidence and we simply translate that method to code:

def classify(self, itemVector):
 """Return class we think item Vector is in"""
 results = []
 for (category, prior) in self.prior.items():
 prob = prior
 col = 1
 for attrValue in itemVector:
 if not attrValue in self.conditional[category][col]:
 # we did not find any instances of this attribute value
 # occurring with this category so prob = 0
 prob = 0
 else:
 prob = prob * self.conditional[category][col][attrValue]
 col += 1
 results.append((prob, category))
 # return the category with the highest probability
 return(max(results)[1])

And when I try the code I get the same results we received when we did this by hand:

>>c = Classifier("iHealth/i", 10, "attr\tattr\tattr\tattr\tclass")
>>print(c.classify(['health', 'moderate', 'moderate', 'yes'])
i500

6-34

Republicans vs. Democrats
Let us look at a new data set, the Congressional Voting Records Data Set, available from the
Machine Learning Repository (http://archive.ics.uci.edu/ml/index.html). It is available in a
form that can be used by our programs at http://guidetodatamining.com. The data consists
of the voting record of United States Congressional Representatives. The attributes are how
that representative voted on 16 different bills.

The file consists of tab separated values:

PROBABILITY AND NAÏVE BAYES

6-35

Attribute Information:

1. Class Name: 2 (democrat, republican)
2. handicapped-infants: 2 (y,n)
3. water-project-cost-sharing: 2 (y,n)
4. adoption-of-the-budget-resolution: 2 (y,n)
5. physician-fee-freeze: 2 (y,n)
6. el-salvador-aid: 2 (y,n)
7. religious-groups-in-schools: 2 (y,n)
8. anti-satellite-test-ban: 2 (y,n)
9. aid-to-nicaraguan-contras: 2 (y,n)
10. mx-missile: 2 (y,n)
11. immigration: 2 (y,n)
12. synfuels-corporation-cutback: 2 (y,n)
13. education-spending: 2 (y,n)
14. superfund-right-to-sue: 2 (y,n)
15. crime: 2 (y,n)
16. duty-free-exports: 2 (y,n)
17. export-administration-act-south-africa: 2 (y,n)

democrat y n y n n n y y y n n n n n y y
democrat y y y n n n y y y y n n n n y y
democrat y y y n n n y y n n n n n y n y
republican y y y n n y y y y y n n n n n y

http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/index.html
http://guidetodatamining.com
http://guidetodatamining.com

Our Naïve Bayes Classifier works fine with this example (the format string says that the first
column is to be interpreted as the class of the instance and the rest of the columns are to be
interpreted as attributes):

format = "””class\tattr\tattr\tattr\tattr\tattr\tattr\tattr\tattr\tattr
\tattr\tattr\tattr\tattr\tattr\tattr\tattr””"

tenfold("house-votes/hv", format)

 Classified as:
 democrat republican
 +-------+-------+
 democrat | 111 | 13 |
 |-------+-------|
 republican | 9 | 99 |
 +-------+-------+

90.517 percent correct
total of 232 instances

That’s great!

To see one of the problems with this
approach consider a different
United States House of
Representatives example. Out of
the 435 voting representatives
I have drawn a training sample
of 200—100 Democrats and
100 Republicans. The following
table indicates what percent voted
‘yes‘ to 4 different bills.

6-36

Wait! There are some
problems with this approach.

This table shows that 99% of Republicans in the sample voted for the CISPA (Cyber
Intelligence Sharing and Protection Act), only 1% voted for the Reader Privacy Act, 99%
voted for Internet Sales Tax and 50% voted for the Internet Snooping Bill. (I made up these
numbers and they do not reflect reality.) We pick a U.S. Representative who wasn’t in our
sample, Representative X, who we would like to classify as either a Democrat or Republican.
I added how that representative voted to our table:

CISPA Reader
Privacy Act

Internet Sales
Tax

Internet
Snooping Bill

Republican 0.99 0.01 0.99 0.5

Democrat 0.01 0.99 0.01 1.0

Rep. X N Y N N

PROBABILITY AND NAÏVE BAYES

6-37

CISPA Reader
Privacy Act

Internet Sales
Tax

Internet
Snooping Bill

Republican 0.99 0.01 0.99 0.5

Democrat 0.01 0.99 0.01 1.0

Do you think the person is a Democrat

or Republican?

% voting ‘yes’

I would guess Democrat. Let us work through the example step-by-step using Naïve Bayes.
The prior probabilities of P(Democrat) and P(Republican) are both 0.5 since there are 100
Republicans and 100 Democrats in the sample. We know that Representative X voted ‘no’ to
CISPA and we also know

P(Republican|C=no) = 0.01 and P(Democrat|C=no) = 0.99

where C = CISPA. And with that bit of evidence our current P(h|D) probabilities are

Factoring in Representative X’s ‘yes’ vote to the Reader Privacy Act and X’s ‘no’ to the sales
tax bill we get:

If we normalize these probabilities:

P(Democrat |D)= 0.485
0.485 + 0.0000005

= 0.485
0.4850005

= 0.99999

So far we are 99.99% sure Representative X is a Democrat.

Finally, we factor in Representative X’s ‘no’ vote on the Internet Snooping Bill.

h= p(h) P(C=no|h) P(h|D)

Republican 0.5 0.01 0.005

Democrat 0.5 0.99 0.495

h= p(h) P(C=no|h) P(R=yes|h) P(T=no|h) P(h|D)

Republican 0.5 0.01 0.01 0.01 0.0000005

Democrat 0.5 0.99 0.99 0.99 0.485

6-38

Whoops. We went from 99.99% likelihood that X was a Democrat to 0%. This is so because
we had 0 occurrences of a Democrat voting ‘no’ for the snooping bill. Based on these
probabilities we predict that person X is a Republican. This goes against our intuition!

Estimating Probabilities
The probabilities in Naïve Bayes are really estimates of the true probabilities. True
probabilities are those obtained from the entire population. For example, if we could give a
cancer test to everyone in the entire population, we could, for example, get the true
probability of the test returning a negative result given that the person does not have cancer.
However, giving the test to everyone is near impossible. We can estimate that probability by
selecting a random representative sample of the population, say 1,000 people, giving the test
to them, and computing the probabilities. Most of the time this gives us a very good estimate
of the true probabilities, but when the true probabilities are very small, these estimates are
likely to be poor. Here is an example. Suppose the true probability of a Democrat voting no to
the Internet Snooping Bill is 0.03—P(S=no|Democrat) = 0.03.

h= p(h) P(C=no|h) P(R=yes|h) P(T=no|h) P(S=no|h) P(h|D)

Republican 0.5 0.01 0.01 0.01 0.50 2.5E-07

Democrat 0.5 0.99 0.99 0.99 0.00 0

s Brain Calisthenics

Suppose we try to estimate these probabilities by selected a sample of 10 Democrats
and 10 Republicans. What is the most probable number of Democrats in the sample that
voted no to the snooping bill?

PROBABILITY AND NAÏVE BAYES

6-39

☐0
☐1

☐2
☐3

As we just saw in the previous example, when a probability is 0 it dominates the Naïve Bayes
calculation—it doesn’t matter what the other values are. Another problem is that
probabilities based on a sample produce a biased underestimate of the true probability.

Fixing this.
If we a trying to calculate something like P(S=no|Democrat) our calculation has been

For expository ease let me simplify this by using shorter variable
names:

 P(x | y) = nc
n

Here n is the total number of instances of class y in the training
set; nc is the total number of instances of class y that have the
value x.

s Brain Calisthenics—answer

Suppose we try to estimate these probabilities by selected a sample of 10 Democrats
and 10 Republicans. What is the most probable number of Democrats in the sample that
voted no to the snooping bill?

 0

So based on the sample P(S=no|Democrat) = 0.

6-40

the number that both are Democrats and voted no on the snooping bill.
P(S=no|Democrat) =

total number of Democrats

The problem we have is when nc equals zero. We can eliminate this problem by changing the
formula to:

 P(x | y) = nc +mp
n +m

m is a constant called the equivalent sample size.
The method for determining the value of m varies.
For now I will use the number of different values that
attribute takes. For example, there are 2 values for how a
person voted on the snooping bill, yes, or no. So I will use
an m of 2. p is the prior estimate of the probability. Often
we assume uniform probability. For example, what is the
probability of someone voting no to the snooping bill
knowing nothing about that person? 1/2. So p in this case is
1/2.

Let’s go through the previous example to see how this works.
First, here are tables showing the vote:

This formula is from p179 of the book “Machine Learning” by Tom Mitchell.

CISPA Reader
Privacy Act

Internet Sales
Tax

Internet
Snooping Bill

Yes 99 1 99 50

No 1 99 1 50

CISPA Reader
Privacy Act

Internet Sales
Tax

Internet
Snooping Bill

Yes 1 99 1 100

No 99 1 99 0

PROBABILITY AND NAÏVE BAYES

6-41

Republican Vote

Democratic Vote

The person we are trying to classify voted no to CISPA. First we compute the probability that
he’s a Republican given that vote. Our new formula is

P(x | y) = nc +mp
n +m

n is the number or Republicans which is 100 and nc is the number of Republicans who voted
no to CISPA which is 1. m is the number of values for the attribute “how they voted on
CISPA”, which is 2 (yes or no). So plugging those number into our formula

P(cispa = no | republican) = 1+ 2(.5)
100 + 2

= 2
102

= 0.01961

We follow the same procedure for a person voting no to CISPA given they are a Democrat.

P(cispa = no | democrat) = 99 + 2(.5)
100 + 2

= 100
102

= 0.9804

With that bit of evidence our current P(h|D) probabilities are

Factoring in Representative X’s ‘yes’ vote to the Reader Privacy Act and X’s ‘no’ to the sales

h= p(h) P(C=no|h) P(h|D)

Republican 0.5 0.01961 0.0098

Democrat 0.5 0.9804 0.4902

s sharpen your pencil

Finish this problem and classify the individual as either a Republican or Democrat.

Recall, he voted no to Cispa, yes to the Reader Privacy act, and no both to the sales tax
and snooping bills.

6-42

s sharpen your pencil -answer

Finish this problem and classify the individual as either a Republican or Democrat.

Recall, he voted no to CISPA, yes to the Reader Privacy act, and no both to the Internet
sales tax and snooping bills.

The calculations for the next 2 columns mirror those we did for the CISPA vote. The
probability that this person voted no to the snooping bill given that he is a Republican is

P(s = no | republican) = 50 + 2(.5)
100 +2

= 51
102

= 0.5

and that he voted no given that he is a Democrat:

P(s = no | democrat) = 0 + 2(.5)
100 +2

= 1
102

= 0.0098

Multiplying those probabilities together gives us

h= p(h) P(C=no|h) P(R=yes|h) P(I=no|h) P(S=no|h) P(h|D)

Republican 0.5 0.01961 0.01961 0.01961 0.5 0.000002

Democrat 0.5 0.9804 0.9804 0.9804 0.0098 0.004617

So unlike the previous approach we would classify this individual as a Democrat. This
matches our intuitions.

PROBABILITY AND NAÏVE BAYES

6-43

A clarification
For this example, the value of m was 2 for all calculations. However, it is not the case that m
remains necessarily constant across attributes. Consider the health monitor example
discussed earlier in the chapter. The attributes for that example included:

Let us say the number of the people surveyed who own the i500 monitor is 100 (this is n).
The number of people who own a i500 and are sedentary is 0 (nc). So, the probability of
someone being sedentary given they own an i500 is

P(sedentary | i500) = nc +mp
n +m

= 0 + 3(.333)
100 + 3

= 1
103

= 0.0097

6-44

survey

What is your main interest in getting a monitor? ◦ health
 ● appearance
 ◦ both

What is your current exercise level? ● sedentary
 ◦ moderate
 ◦ active

Are you comfortable with tech devices? ● yes
 ◦ no

For this attribute, m = 3 since the attribute can take one of 3 values (health, appearance, both). If we assume uniform probabilities, then p = 1/3 since the probability of the attribute being any one of the values is
This attribute also has m = 3 and p = 1/3

For this attribute, m = 2 since the attribute can take one of 2 values and p = 1/2 since the probability of the attribute being any one of those is 1/2

Numbers
You probably noticed that I changed from numerical data which I used in all the nearest
neighbor approaches I discussed to using categorical data for the naïve Bayes formula. By
“categorical data” we mean that the data is put into discrete categories. For example, we
divide people up in how they voted for a particular bill and the people who voted ‘yes’ go in
one category and the people who voted ‘no’ go in another. Or we might categorize musicians
by the instrument they play. So all saxophonists go in one bucket, all drummers in another,
all pianists in another and so on. And these categories do not form a scale. So, for example,
saxophonists are not ‘closer’ to pianists than they are to drummers. Numerical data is on a
scale. An annual salary of $105,000 is closer to a salary of $110,000 than it is to one of
$40,000.

For Bayesian approaches we count things—how many occurrences are there of people who
are sedentary—and it may not be initially obvious how to count things that are on a scale—for
example, something like grade point average. There are two approaches.

Method 1: Making categories
One solution is to make categories by discretizing the continuous attribute. You often see this
on websites and on survey forms. For example:

Once we have this information divided
nicely into discrete values, we can use
Naïve Bayes exactly as we did before.

PROBABILITY AND NAÏVE BAYES

6-45

Age
 ◦ < 18
 ◦ 18-22
 ◦ 23-30
 ◦ 30-40
 ◦ > 40

Annual Salary
 ◦ > $200,000

 ◦ 150,000 - 200,000

 ◦ 100,00 - 150,000

 ◦ 60,000-100,000

 ◦ 40,000-60,000

Method 2: Gaussian distributions!

6-46

Harumph! Well I
would take that income
attribute and discretize it
into distinct categories!
Then we can use Naïve
Bayes!

That’s sort of old
school. I would just use a
Gaussian distribution and
deal with that attribute
using a probability density
function. We can still use
Bayes.

The terms “Gaussian Distribution” and “Probability Density Function” sound cool, but they
are more than good phrases to know so you can impress your friends at dinner parties. So
what do they mean and how they can be used with the Naïve Bayes method? Consider the
example we have been using with an added attribute of income:

Main Interest Current
Exercise Level

How Motivated Comfortable
with tech.
Devices?

Income
(in $1,000)

Model #

both sedentary moderate yes 60 i100

both sedentary moderate no 75 i100

health sedentary moderate yes 90 i500

appearance active moderate yes 125 i500

appearance moderate aggressive yes 100 i500

appearance moderate aggressive no 90 i100

health moderate aggressive no 150 i500

both active moderate yes 85 i100

both moderate aggressive yes 100 i500

appearance active aggressive yes 120 i500

both active aggressive no 95 i500

health active moderate no 90 i500

health sedentary aggressive yes 85 i500

appearance active moderate no 70 i100

health sedentary moderate no 45 i100

Let’s think of the typical purchaser of an i500, our awesome, premiere device. If I were to ask
you to describe this person you might give me the average income:

mean = 90 +125 +100 +150 +100 +120 + 95 + 90 + 85
9

= 955
9

= 106.111

And perhaps after reading chapter 4 you might give the standard deviation:

PROBABILITY AND NAÏVE BAYES

6-47

Recall that the standard deviation describes the range of scattering. If all the values are
bunched up around the mean, the standard deviation is small; if the values are scattered the
standard deviation is large

s sharpen your pencil

What is the income standard deviation of the people who bought the i500? (those
values are shown in the column below)

6-48

sd =
(xi − x)

2

i
∑
card(x)

Income
(in $1,000)
90

125

100

150

100

120

95

90

85

s sharpen your pencil - solution

What is the standard deviation of the income of the people who bought the i500?
(those values are shown in the column above)

Income
(in $1,000)

(x-106.111) (x-106.111)2

90 -16.111 259.564

125 18.889 356.794

100 -6.111 37.344

150 43.889 1926.244

100 -6.111 37.344

120 13.889 192.904

95 -11.111 123.454

90 -16.111 259.564

85 -21.111 445.674

 ∑ = 3638.889

PROBABILITY AND NAÏVE BAYES

6-49

sd = 3638.889
9

= 404.321 = 20.108

Population standard deviation and sample standard deviation.
The formula for standard deviation that we just used is called the population standard
deviation. It is called that because we use this formula when we have data on the entire
population we are interested in. For example, we might give a test to 500 students and then
compute the mean and standard deviation. In this case, we would use the population
standard deviation, which is what we have been using. Often, though, we do not have data on
the entire population. For example, suppose I am interested in the effects of drought on the
deer mice in Northern New Mexico and as part of that study I want the average (mean) and
standard deviation of their weights. In this case I am not going to weigh every mouse in
Northern New Mexico. Rather I will collect and weigh some representative sample of mice.

For this sample, I can use the standard deviation formula I used above, but there is another
formula that has been shown to be a better estimate of the entire population standard
deviation. This formula is called the sample standard deviation and it is just a slight
modification of the previous formula:

The sample standard deviation of the income example is

sd =
(xi − x)

2

i
∑
card(x)−1

6-50

For the rest of this chapter we will be using sample standard deviation.

You probably have heard terms such as normal distribution, bell curve, and Gaussian
distribution. Gaussian distribution is just a high falutin term for normal distribution. The
function that describes this distribution is called the Gaussian function or bell curve. Most of
the time the Numerati (aka data miners) assume attributes follow a Gaussian distribution.
What is means is that about 68% of the instances in a Gaussian distribution fall within 1
standard deviation of the mean and 95% of the instances fall within 2 standard deviations of
the mean:

In our case, the mean was 106.111 and the sample standard deviation was 21.327. So 95% of
the people who purchase an i500 earn between $42,660 and $149,770. If I asked you if you
thought P(100k| i500) —the likelihood that an i500 purchaser earns $100,000—was, you
might think that's pretty likely. If I asked you what you thought the likelihood of
P(20k| i500)—the likelihood that an i500 purchaser earns $20,000—was , you might think it
was pretty unlikely.

sd = 3638.889
9 −1

= 3638.889
8

= 454.861 = 21.327

PROBABILITY AND NAÏVE BAYES

6-51

To formalize this, we are going to use the mean and standard deviation to compute this
probability as follows:

 P(xi | yj) =
1
2πσ ij

e
−(xi−µij)

2

2σ ij
2

Let’s jump right into dissecting this formula so we can see how simple it really is. Let us say
we are interested in computing P(100k|i500), the probability that a person earns $100,000
(or 100k) given they purchased an i500. A few pages ago we computed the average income
(mean) of people who bought the i500. We also computed the sample standard deviation.
These values are shown on the following page. In Numerati speak, we represent the mean
with the Greek letter µ (mu) and the standard deviation as σ (sigma).

6-52

Everytime I type a complex looking
formula into this book, I feel the
need to say something like “don’t
panic.” It could be that none of you
readers panic and I am just the one
panicking.

However, let me say this.
Data mining has professional
terminology and formulas. Before
you dive into data mining you might
think “those things look difficult.”
But after you study, even for a
short time, these formulas become
nothing special. It is just a matter of
working through the formula out
step-by-step.

Maybe putting the formula in a bigger
font makes it look simpler!

P(xi | yj) =
1
2πσ ij

e
−(xi−µij)

2

2σ ij
2

Let’s plug these values into the formula:

P(xi | yj) =
1

2π (21.327)
e
−(100−106.111)2

2(21.327)2

and do some math:

P(xi | yj) =
1

6.283(21.327)
e
−(37.344)
909.68

and more math:

P(xi | yj) =
1

53.458
e−0.0411

The e is a mathematical constant that is the base of the natural logarithm. It’s value is
approximately 2.718.

P(xi | yj) =
1

53.458
(2.718)−0.0411 = (0.0187)(0.960) = 0.0180

So the probability that the income of a person who bought the i500 is $100,000 is 0.0180.

PROBABILITY AND NAÏVE BAYES

6-53

µij = 106.111
σij = 21.327
xi = 100

s sharpen your pencil

In the table below I have the horsepower ratings for cars that get 35 miles per gallon.
I would like to know the probability of a Datsun 280z having 132 horsepower given it
gets 35 miles per gallon.

6-54

car HP

Datsun 210 65

Ford Fiesta 66

VW Jetta 74

Nissan Stanza 88

Ford Escort 65

Triumph tr7 coupe 88

Plymouth Horizon 70

Suburu DL 67

μij = _____

σij = _____

xi = _____

s sharpen your pencil -solution - part 1

In the table below I have the horsepower ratings for cars that get 35 miles per gallon.
I would like to know the probability of a Datsun 280z having 132 horsepower given it
gets 35 miles per gallon.

σ = (65 −µ)2 +(66 −µ)2 + (74 −µ)2 + (88 −µ)2 + (65 −µ)2 + (88 −µ)2 + (70 −µ)2 + (67 −µ)2

7

σ = 672.875
7

= 96.126 = 9.804

PROBABILITY AND NAÏVE BAYES

6-55

car HP

Datsun 210 65

Ford Fiesta 66

VW Jetta 74

Nissan Stanza 88

Ford Escort 65

Triumph tr7 coupe 88

Plymouth Horizon 70

Suburu DL 67

μij = 72,875

σij = 9.804

xi =132

s sharpen your pencil -solution - part 2

In the table below I have the horsepower ratings for cars that get 35 miles per gallon.
I would like to know the probability of a Datsun 280z having 132 horsepower given it
gets 35 miles per gallon.

Ok. it is extremely unlikely that a Datsun 280z, given that it gets 35 miles to the gallon
has 132 horsepower. (but it does!)

6-56

μij = 72,875

σij = 9.804

xi =132

P(xi | yj) =
1
2πσ ij

e
−(xi−µij)

2

2σ ij
2

P(132hp | 35mpg) = 1
2π (9.804)

e
−(132−72.875)2

2(9.804)2

= 1
6.283(9.804)

e
−3495.766
192.237 = 1

24.575
e−18.185

= 0.0407(0.00000001266)
= 0.0000000005152

A few implementation notes.
In the training phase for Naive Bayes, we will compute the mean and sample standard
deviation of every numeric attribute. Shortly, we will see how to do this in detail.

In the classification phase, the above formula can be implemented with just a few lines of
Python:

import math

def pdf(mean, ssd, x):
 """Probability Density Function computing P(x|y)
 input is the mean, sample standard deviation for all the items in y,
 and x."""
 ePart = math.pow(math.e, -(x-mean)**2/(2*ssd**2))
 return (1.0 / (math.sqrt(2*math.pi)*ssd)) * ePart

Let’s test this with the examples we did above:

>>>pdf(106.111, 21.327, 100)
0.017953602706962717

>>>pdf(72.875, 9.804, 132)
5.152283971078022e-10

PROBABILITY AND NAÏVE BAYES

6-57

Whew! Time for a break!

Python Implementation
Training Phase
The Naïve Bayes method relies on prior and conditional probabilities. Let’s go back to our
Democrat/Republican example. Prior probabilities are the probabilities that hold before we
have observed any evidence. For example, if I know there are 233 Republicans and 200
Democrats, then the prior probability of some arbitrary member of the U.S. House of
Representatives being a Republican is

P(republican) = 233
433

= 0.54

This is denoted P(h). Conditional Probability P(h|D) is the probability that h holds given that
we know D, for example, P(democrat|bill1Vote=yes). In Naïve Bayes, we flip that probability
and compute P(D|h)—for example, P(bill1Vote=yes|democrat).

In our existing Python program we store these conditional probabilities in a dictionary of the
following form:

{'democrat': {'bill 1': {'yes': 0.333, 'no': 0.667},
 'bill 2': {'yes': 0.778, 'moderate': 0.222}}

 'republican': {'bill 1': {'yes': 0.811, 'no': 0.189},
 'bill 2': {'yes': 0.250, 'no': 0.750}}}

So the probability that someone voted yes to bill 1 given that they are a Democrat
(P(bill 1=yes|democrat)) is 0.333.

We will keep this data structure for attributes whose values are discrete values (for example,
‘yes’, ‘no’, ‘sex=male’, ‘sex=female’). However, when attributes are numeric we will be using
the probability density function and we need to store the mean and sample standard
deviation for that attribute. For these numeric attributes I will use the following structures:

6-58

mean = {'democrat': {'age': 57, 'years served': 12}
 'republican': {'age': 53, 'years served': 7}}

ssd = {'democrat': {'age': 7, 'years served': 3}
 'republican': {'age': 5, 'years served': 5}}

As before, each instance is represented by a line in a data file. The attributes of each
instances are separated by tabs. For example, the first few lines of a data file for the Pima
Indians Diabetes Data set might be:

The columns represent, in
order, the number of times
pregnant, plasma glucose
concentration, blood pressure,
triceps skin fold thickness,
serum insulin level, body mass
index, diabetes pedigree
function, age, and a ‘1’ in the
last column represents that
they developed diabetes and a
‘0’ they did not.

Also as before, we are going to represent how the program should interpret each column by
use of a format string, which uses the terms

• attr identifies columns that should be interpreted as non-numeric attributes, and which
will use the Bayes methods shown earlier in this chapter.

• num identifies columns that should be interpreted as numeric attributes, and which will
use the Probability Density Function (so we will need to compute the mean and standard
deviation during training).

• class identifies the column representing the class of the instance (what we are trying to
learn)

PROBABILITY AND NAÏVE BAYES

6-59

3! 78! 50! 32! 88! 31.0! 0.248! 26! 1
4! 111!72! 47! 207!37.1! 1.390! 56! 1
1! 189!60! 23! 846!30.1! 0.398! 59! 1
1! 117!88! 24! 145!34.5! 0.403! 40! 1
3! 107!62! 13! 48! 22.9! 0.678! 23! 1
7! 81! 78! 40! 48! 46.7! 0.261! 42! 0
2! 99! 70! 16! 44! 20.4! 0.235! 27! 0
5! 105!72! 29! 325!36.9! 0.159! 28! 0
2! 142!82! 18! 64! 24.7! 0.761! 21! 0
1! 81! 72! 18! 40! 26.6! 0.283! 24! 0
0! 100!88! 60! 110!46.8! 0.962! 31! 0

In the Pima Indian Diabetes data set the format string will be

To compute the mean and sample standard deviation we will need some temporary data
structures during the training phase. Again, let us look at a small sample of the Pima data set.

The last column represents the class of each instance. So the first three individuals developed
diabetes and that last three did not. All the other columns represent numeric attributes. of
which we need to compute the mean and standard deviation for each of the two classes. To
compute the mean for each class and attribute I will need to keep track of the running total.
In our existing code we already keep track of the total number of instances. I will implement
this using a dictionary:

totals {'1': {1: 8, 2: 378, 3: 182, 4: 102, 5: 1141,
 6: 98.2, 7: 2.036, 8: 141},

 {'0': {1: 3, 2: 323, 3: 242, 4: 96, 5: 214,
 6: 98.1, 7: 2.006, 8: 76}

So for class 1, the column 1 total is 8 (3 + 4 + 1), the column 2 total is 378, etc.

For class 0, the column 1 total is 3 (2 + 1 + 0), the column 2 total is 323 and so on.

For standard deviation, we will also need to keep the original data, and for that we will use a
dictionary in the following format:

3! 78! 50! 32! 88! 31.0! 0.248! 26! 1
4! 111!72! 47! 207!37.1! 1.390! 56! 1
1! 189!60! 23! 846!30.1! 0.398! 59! 1
2! 142!82! 18! 64! 24.7! 0.761! 21! 0
1! 81! 72! 18! 40! 26.6! 0.283! 24! 0
0! 100!88! 60! 110!46.8! 0.962! 31! 0

6-60

"num num num num num n
um num num class"

numericValues

 {'1': 1: [3, 4, 1], 2: [78, 111, 189], ...},

 {'0': {1: [2, 1, 0], 2: [142, 81, 100]}

I have added the code to create these temporary data structures to the __init__() method
of our Classifier class as shown below:

import math

class Classifier:
 def __init__(self, bucketPrefix, testBucketNumber, dataFormat):

 """ a classifier will be built from files with the bucketPrefix
 excluding the file with textBucketNumber. dataFormat is a string that
 describes how to interpret each line of the data files. For example,
 for the iHealth data the format is:
 "attr!attr! attr! attr! class"
 """
 total = 0
 classes = {}
 # counts used for attributes that are not numeric
 counts = {}
 # totals used for attributes that are numereric
 # we will use these to compute the mean and sample standard deviation
 # for each attribute - class pair.
 totals = {}
 numericValues = {}

 # reading the data in from the file
 self.format = dataFormat.strip().split('\t')
 #
 self.prior = {}
 self.conditional = {}

 # for each of the buckets numbered 1 through 10:
 for i in range(1, 11):
 # if it is not the bucket we should ignore, read in the data
 if i != testBucketNumber:
 filename = "%s-%02i" % (bucketPrefix, i)
 f = open(filename)

PROBABILITY AND NAÏVE BAYES

6-61

 lines = f.readlines()
 f.close()
 for line in lines:
 fields = line.strip().split('\t')
 ignore = []
 vector = []
 nums = []
 for i in range(len(fields)):
 if self.format[i] == 'num':
 nums.append(float(fields[i]))
 elif self.format[i] == 'attr':
 vector.append(fields[i])
 elif self.format[i] == 'comment':
 ignore.append(fields[i])
 elif self.format[i] == 'class':
 category = fields[i]
 # now process this instance
 total += 1
 classes.setdefault(category, 0)
 counts.setdefault(category, {})
 totals.setdefault(category, {})
 numericValues.setdefault(category, {})
 classes[category] += 1
 # now process each non-numeric attribute of the instance
 col = 0
 for columnValue in vector:
 col += 1
 counts[category].setdefault(col, {})
 counts[category][col].setdefault(columnValue, 0)
 counts[category][col][columnValue] += 1
 # process numeric attributes
 col = 0
 for columnValue in nums:
 col += 1
 totals[category].setdefault(col, 0)
 #totals[category][col].setdefault(columnValue, 0)
 totals[category][col] += columnValue
 numericValues[category].setdefault(col, [])
 numericValues[category][col].append(columnValue)

6-62

 #
 # ok done counting. now compute probabilities
 # first prior probabilities p(h)
 #
 for (category, count) in classes.items():
 self.prior[category] = count / total
 #
 # now compute conditional probabilities p(h|D)
 #
 for (category, columns) in counts.items():
 self.conditional.setdefault(category, {})
 for (col, valueCounts) in columns.items():
 self.conditional[category].setdefault(col, {})
 for (attrValue, count) in valueCounts.items():
 self.conditional[category][col][attrValue] = (
 count / classes[category])
 self.tmp = counts
 #
 # now compute mean and sample standard deviation
 #

s code it

Can you add the code to compute the means and standard deviations? Download the
file naiveBayesDensityFunctionTraining.py from guidetodatamining.com.

Your program should produce the data structures ssd and means:

c = Classifier("pimaSmall/pimaSmall", 1,
 "num!num! num! num! num! num! num! num! class")
>> c.ssd
{'0': {1: 2.54694671925252, 2: 23.454755259159146, ...},
 '1': {1: 4.21137914295475, 2: 29.52281872377408,}}
>>> c.means
{'0': {1: 2.8867924528301887, 2: 111.90566037735849, ...},
 '1': {1: 5.25, 2: 146.05555555555554, ...}}
!

PROBABILITY AND NAÏVE BAYES

6-63

s code it solution

Here is my solution:

 #
 # now compute mean and sample standard deviation
 #
 self.means = {}
 self.ssd = {}
 self.totals = totals
 for (category, columns) in totals.items():
 self.means.setdefault(category, {})
 for (col, cTotal) in columns.items():
 self.means[category][col] = cTotal / classes[category]
 # standard deviation

 for (category, columns) in numericValues.items():

 self.ssd.setdefault(category, {})
 for (col, values) in columns.items():
 SumOfSquareDifferences = 0
 theMean = self.means[category][col]
 for value in values:
 SumOfSquareDifferences += (value - theMean)**2
 columns[col] = 0
 self.ssd[category][col] = math.sqrt(SumOfSquareDifferences
 / (classes[category] - 1))

The file containing this solution is naiveBayesDensityFunctionTrainingSolution.py at our
website.

6-64

s code it 2

Can you revise the classify method so it uses the probability density function for
numeric attributes? The file to modify is naiveBayesDensityFunctionTemplate.py. Here
is the original classify method:

 def classify(self, itemVector, numVector):
 """Return class we think item Vector is in"""
 results = []
 sqrt2pi = math.sqrt(2 * math.pi)
 for (category, prior) in self.prior.items():
 prob = prior
 col = 1
 for attrValue in itemVector:
 if not attrValue in self.conditional[category][col]:
 # we did not find any instances of this attribute value
 # occurring with this category so prob = 0
 prob = 0
 else:
 prob = prob * self.conditional[category][col][attrValue]
 col += 1
 # return the category with the highest probability
 #print(results)
 return(max(results)[1])

PROBABILITY AND NAÏVE BAYES

6-65

s code it 2 - solution

Can you revise the classify method so it uses the probability density function for
numeric attributes? The file to modify is naiveBayesDensityFunctionTemplate.py.

Solution:

 def classify(self, itemVector, numVector):
 """Return class we think item Vector is in"""
 results = []
 sqrt2pi = math.sqrt(2 * math.pi)
 for (category, prior) in self.prior.items():
 prob = prior
 col = 1
 for attrValue in itemVector:
 if not attrValue in self.conditional[category][col]:
 # we did not find any instances of this attribute
value
 # occurring with this category so prob = 0
 prob = 0
 else:
 prob = prob * self.conditional[category][col]
[attrValue]
 col += 1
 col = 1
 for x in numVector:
 mean = self.means[category][col]
 ssd = self.ssd[category][col]
 ePart = math.pow(math.e, -(x - mean)**2/(2*ssd**2))
 prob = prob * ((1.0 / (sqrt2pi*ssd)) * ePart)
 col += 1
 results.append((prob, category))
 # return the category with the highest probability
 #print(results)
 return(max(results)[1])

6-66

Is this any better than the Nearest Neighbor Algorithm?
In Chapter 5 we evaluated how well the k Nearest Neighbor algorithm did with both the total
Pima data set and a subset. Here are those results:

Here are the results when we use Naïve Bayes with these two data sets:

PROBABILITY AND NAÏVE BAYES

6-67

pimaSmall pima

k=1 59.00% 71.247%

k=3 61.00% 72.519%

pimaSmall pima

Bayes 72.000% 77.354%

Wow! So it looks
like Naïve Bayes performs
better than kNN!

The kappa score for
the kNN where k=3 on the
large data set was 0.35415,
only fair performance. I
wonder what kappa is for
Naïve Bayes?

6-68

The kappa is 0.4875, moderate agreement!

Advantages of Bayes
• simple to implement (just counting

things)
• need less training data than many other

methods
• a good method to use if you want

something that performs well and has
good performance times.

Main disadvantage of Bayes:

It cannot learn interactions among
features. For example, it cannot learn that
I like foods with cheese and I like foods
with rice but I do not like foods with both

Advantages of kNN
• simple to implement.
• does not assume the data has any

particular structure—a good thing!
• large amount of memory needed to

store the training set.

kNN

k Nearest Neighbors is a reasonable choice when
the training set is large. kNN is extremely versatile
and used in a large number of fields including
recommendation systems, proteomics (the study of
the entire protein set of an organism), the
interaction among proteins, and image
classification.

So for this example, Naïve Bayes is better than k

What enables us to multiple probabilities together is the fact that the events these
probabilities represent are independent. For example, consider a game where we flip a coin
and roll a die. These events are independent meaning what we roll on the die does not
depend on whether we flip a heads or tails on the coin. And, as I just said, if events are
independent we can determine their joint probability (the probability that they both
occurred) by multiplying the individual probabilities together. So the probability of getting a
heads and rolling a 6 is

 P(heads ∧ 6) = P(heads)× P(6) = 0.5 × 1
6
= 0.08333

Let's say I alter a deck of cards keeping all the black cards (26 of them) but only retaining the
face cards for the red suits (6 of them). That makes a 32 card deck. What is the probability
of selecting a face card?

 P(facecard) = 12
32

= 0.375

PROBABILITY AND NAÏVE BAYES

6-69

The probability of selecting a red card is

 P(red) = 6
32

= 0.1875

What is the probability of selecting a single card that is both red and a face card? Here we do
not multiply probabilities. We do not do

 P(red ∧ facecard) = P(red)× P(facecard) = 0.375 × 0.185 = 0.0703

Here is what our common sense tells us. The chance of picking a red card is .1875. But if we
pick a red card it is 100% likely it will be a face card. So it seems that the probability of
picking a card that is both red and a face card is .1875.

Or we can start a different way. The probability of picking a face card is .375. The way the
deck is arranged half the face cards are red. So the probability of picking a card that is both
red and a face card is .375 * .5 = .1875.

Here we cannot multiply probabilities together because the attributes are not independent—
if we pick red the probability of a face card changes—and vice versa.

In many if not most real world data mining problems there are attributes that are not
independent.

6-70

Consider the athlete data. Here we had
2 attributes weight and height. Weight
and height are not independent. The
taller you get the more likely you will be
heavier.

Suppose I have attributes zip code,
income, and age. These are not independent. Certain zipcodes have big bucks houses
others consist of trailer parks. Palo Alto zipcodes may be dominated by 20-
somethings—Arizona zipcodes may be
dominated by retirees.

Think about cases yourself. For example, consider attributes of cars. Are they independent?
Attributes of a movie? Amazon purchases?

So, for Bayes to work we need to use attributes that are independent, but most real-world
problems violate that condition. What we are going to do is just to assume that they are
independent! We are using the magic wand of sweeping things under the rug™—and
ignoreing this problem. We call it naïve Bayes because we are naïvely assuming
independence even though we know it is not. It turns out that naïve Bayes works really,
really, well even with this naïve assumption.

s code it

Can you run the naïve Bayes code on our other data sets? For example, our kNN
algorithm was 53% accurate on the auto MPG data set. Does a Bayes approach
produce better results?

tenfold("mpgData/mpgData", "class attr! num num num num! comment")

?????
!

PROBABILITY AND NAÏVE BAYES

6-71

Think about the music attributes—things

like amount of distorted guitar (1-5

scale), amount of classical violin sound.

Here many of these attributes are not

independent. If I have a lot of distorted

guitar sound, the probability of having a

classical violin sound decreases.

Suppose I have a dataset consisting of
blood test results. Many of these values
are not independent. For example, there
are multiple thyroid tests including free
T4 and TSH. There is an inverse
relationship between the values of
these two tests.

