
Chapter 2: Collaborative filtering

I like what you like

We are going to start our exploration of data mining by looking at recommendation systems. 
Recommendation systems are everywhere—from Amazon: 

	  



to last.fm recommending music or concerts:

In the Amazon example, above, Amazon combines two bits of information to make a 
recommendation. The first is that I viewed The Lotus Sutra translated by Gene Reeves; the 
second, that customers who viewed that translation of the Lotus Sutra  also viewed several 
other translations. 

The recommendation method we are looking at in this chapter is called collaborative 
filtering. It's called collaborative because it makes recommendations based on other people—
in effect, people collaborate to come up with recommendations. It works like this. Suppose 
the task is to recommend a book to you. I search among other users of the site to find one 
that is similar to you in the books she enjoys. Once I find that similar person I can see what 
she likes and recommend those books to you—perhaps Paolo Bacigalupi's The Windup Girl.
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How do I find someone who is similar?
So the first step is to find someone 
who is similar.  Here's the simple 
2D (dimensional) explanation. 
Suppose users rate books on a 5 
star system—zero stars means the 
book is terrible, 5 stars means the 
book is great.  Because I said we are 
looking at the simple 2D case, we 
restrict our ratings to two books: 
Neal Stephenson's Snow Crash and 
the Steig Larsson's The Girl with 
the Dragon Tattoo.

First, here's a table showing 3 users who rated these books

Snow Crash Girl with the Dragon Tattoo
Amy 5✩ 5✩
Bill 2✩ 5✩
Jim 1✩ 4✩

I would like to recommend a book to the mysterious Ms. X who rated Snow Crash 4 stars and 
The Girl with the Dragon Tattoo 2 stars.  The first task is to find the person who is most 
similar, or closest, to Ms. X.  I do this by computing distance.

COLLABORATIVE FILTERING

2-3



Manhattan Distance
The easiest distance measure to compute is what is called Manhattan Distance or cab driver 
distance. In the 2D case, each person is represented by an (x, y) point. I will add a subscript 
to the x and y to refer to different people. So (x1, y1) might be Amy and (x2, y2) might be the 
elusive Ms. X. Manhattan Distance is then calculated by

  | x1  -  x2| + | y1  - y2 |

(so the absolute value of the 
difference between the x values plus 
the absolute value of the difference 
between the y values). So the 
Manhattan Distance for Amy and 
Ms. X is 4:

Computing the distance between Ms. X and all three people gives us:

Distance from Ms. X
Amy 4
Bill 5
Jim 5

2-4



Amy is the closest match. We can look in her history and see, for example,  that she gave five 
stars to Paolo Bacigalupi's The Windup Girl and we would recommend that book to Ms. X.

Euclidean Distance
One benefit of Manhattan Distance is that it is fast to compute. If we are Facebook and are 
trying to find who among one million users is most similar to little Danny from Kalamazoo, 
fast is good.

Pythagorean Theorem
You may recall the Pythagorean Theorem from your distant educational past. Here, instead 
of finding the Manhattan Distance between Amy and Ms. X (which was 4) we are going to 
figure out the straight line, as-the-crow-flies, distance
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The Pythagorean Theorem tells us how to compute that distance.

This straight-line, as-the-crow-flies distance we are calling Euclidean Distance. The formula 
is

 Recall that x1 is how well person 1 liked Dragon Tattoo and x2 is how well person 2 liked it; 
y1 is how well person 1 liked Snow Crash and y2 is how well person 2 liked it.

Amy rated both Snow Crash and Dragon Tattoo a 5; The elusive Ms. X rated Dragon Tattoo 
a 2 and Snow Crash a 4.  So the Euclidean distance between 

Computing the rest of the distances we get

Distance from Ms. X
Amy 3.16
Bill 3.61
Jim 3.61

p
(x1 � x2)2 + (y1 � y2)2

p
(5� 2)2 + (5� 4)2 =

p
32 + 12 =

p
10 = 3.16
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N-dimensional thinking
Let's branch out slightly from just looking at rating two books (and hence 2D) to looking at 
something slightly more complex. Suppose we work for an online streaming music service 
and we want to make the experience more compelling by recommending bands. Let's say 
users can rate bands on a star system 1-5 stars and they can give half star ratings (for 
example, you can give a band 2.5 stars). The following chart shows 8 users and their ratings 
of eight bands.

Angelica Bill Chan Dan Hailey Jordyn Sam Veronica
Blues Traveler 3.5 2 5 3 - - 5 3
Broken Bells 2 3.5 1 4 4 4.5 2 -
Deadmau5  - 4 1 4.5 1 4 - -
Norah Jones 4.5 - 3 - 4 5 3 5
Phoenix 5 2 5 3 - 5 5 4
Slightly Stoopid 1.5 3.5 1 4.5 - 4.5 4 2.5
The Strokes 2.5 - - 4 4 4 5 3
Vampire Weekend 2 3 - 2 1 4 - -

The hyphens in the table indicate that a user didn't rate that particular band. For now we are 
going to compute the distance based on the number of bands they both reviewed. So, for 
example, when computing the distance between Angelica and Bill, we will use the ratings for 
Blues Traveler, Broken Bells, Phoenix, Slightly Stoopid, and Vampire Weekend.  So the 
Manhattan Distance would be:
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Angelica Bill Difference
Blues Traveler 3.5 2 1.5
Broken Bells 2 3.5 1.5
Deadmau5  - 4  
Norah Jones 4.5 -  
Phoenix 5 2 3
Slightly Stoopid 1.5 3.5 2
The Strokes 2.5 - -
Vampire Weekend 2 3 1
Manhattan Distance: 9

The Manhattan Distance row, the last row of the table, is simply the sum of the differences: 
(1.5  + 1.5 + 3 + 2 + 1).

Computing the Euclidean Distance is similar. We only use the bands they both reviewed:

Angelica Bill Difference Difference2

Blues Traveler 3.5 2 1.5 2.25
Broken Bells 2 3.5 1.5 2.25
Deadmau5  - 4  
Norah Jones 4.5 -  
Phoenix 5 2 3 9
Slightly Stoopid 1.5 3.5 2 4
The Strokes 2.5 - -
Vampire Weekend 2 3 1 1
Sum of squares 18.5
Euclidean Distance 4.3
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To parse that out a bit more:

Euclidean = (3.5 − 2)2 +(2 − 3.5)2 + (5 − 2)2 + (1.5 − 3.5)2 + (2 − 3)2

= 1.52 + (−1.5)2 + 32 + (−2)2 + (−1)2

= 2.25 + 2.25 + 9 + 4 +1

= 18.5 = 4.3

Got it?

Try an example on your own...

COLLABORATIVE FILTERING
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Angelica Bill Chan Dan Hailey Jordyn Sam Veronica
Blues Traveler 3.5 2 5 3 - - 5 3
Broken Bells 2 3.5 1 4 4 4.5 2 -
Deadmau5  - 4 1 4.5 1 4 - -
Norah Jones 4.5 - 3 - 4 5 3 5
Phoenix 5 2 5 3 - 5 5 4
Slightly Stoopid 1.5 3.5 1 4.5 - 4.5 4 2.5
The Strokes 2.5 - - 4 4 4 5 3
Vampire Weekend 2 3 - 2 1 4 - -

s sharpen your pencil

Compute the Euclidean Distance between Hailey and Veronica.

Compute the Euclidean Distance between Hailey and Jordyn
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A flaw
It looks like we discovered a flaw with using these distance measures. When we computed the  
distance between Hailey and Veronica, we noticed they only rated two bands in common 
(Norah Jones and The Strokes), whereas when we computed the distance between Hailey 
and Jordyn, we noticed they rated five bands in common. This seems to skew our distance 
measurement, since the Hailey-Veronica distance is in 2 dimensions while the Hailey-Jordyn  

s sharpen your pencil - solution

Compute the Euclidean Distance between Hailey and Veronica.

    =
p

(4� 5)2 + (4� 3)2 =
p
1 + 1 =

p
2 = 1.414

Compute the Euclidean Distance between Hailey and Jordyn

   =
p

(4� 4.5)2 + (1� 4)2 + (4� 5)2 + (4� 4)2 + (1� 4)2

=
p

(�0.5)2 + (�3)2 + (�1)2 + (0)2 + (�3)2

 =
p
.25 + 9 + 1 + 0 + 9 =

p
19.25 = 4.387
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distance is in 5 dimensions. Manhattan Distance and Euclidean Distance work best when 
there are no missing values. Dealing with missing values is an active area of scholarly 
research. Later in the book we will talk about how to deal with this problem.  For now just be 
aware of the flaw as we continue our first exploration into building a recommendation 
system.

A generalization
We can generalize Manhattan Distance and Euclidean Distance to what is called the 
Minkowski Distance Metric:

                              d(x, y) = ( | xk − yk |
r )
1
r

k=1

n

∑
When

• r = 1: The formula is Manhattan Distance.

• r = 2: The formula is Euclidean Distance

• r = ∞: Supremum Distance

h        Arghhhh Math!  

When you see formulas like this in a book you have 
several options. One option is to see the formula--
brain neurons fire that say math formula--and then 
you quickly skip over it to the next English bit. I 
have to admit that I was once a skipper. The other 
option is to see the formula, pause, and dissect it. 
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Many times you’ll find the formula quite understandable. Let’s dissect it now. When r = 1 the 
formula reduces to Manhattan Distance:

d(x, y) = | xk − yk |k=1

n∑

So for the music example we have been using throughout the chapter, x and y represent two 
people and d(x, y) represents the distance between them. n is the number of bands they both 
rated (both x and y rated that band).  We’ve done that calculation a few pages back:

Angelica Bill Difference
Blues Traveler 3.5 2 1.5
Broken Bells 2 3.5 1.5
Deadmau5  - 4  
Norah Jones 4.5 -  
Phoenix 5 2 3
Slightly Stoopid 1.5 3.5 2
The Strokes 2.5 - -
Vampire Weekend 2 3 1
Manhattan Distance: 9

That difference column represents the absolute value of the difference and we sum those up 
to get 9. 

When r = 2, we get the Euclidean distance:

d(x, y) = (xk − yk )
2

k=1

n∑

COLLABORATIVE FILTERING
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Here’s the scoop! 

The greater the r, the more a large difference in 
one dimension will influence the total difference.

Representing the data in Python (finally some coding)
There are several ways of representing the data in the table above using Python. I am going to 
use Python's dictionary (also called an associative array or hash table):

Remember,

All the code for the book is available at 
www.guidetodatamining.com. 
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users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, 
! !       "Norah Jones": 4.5, "Phoenix": 5.0, 
!                "Slightly Stoopid": 1.5, 
                      "The Strokes": 2.5, "Vampire Weekend": 2.0},
         
         "Bill":     {"Blues Traveler": 2.0, "Broken Bells": 3.5, 
                      "Deadmau5": 4.0, "Phoenix": 2.0, 
                      "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},  

         "Chan":     {"Blues Traveler": 5.0, "Broken Bells": 1.0, 
                      "Deadmau5": 1.0, "Norah Jones": 3.0, 
                      "Phoenix": 5, "Slightly Stoopid": 1.0}, 

         "Dan":      {"Blues Traveler": 3.0, "Broken Bells": 4.0, 
                      "Deadmau5": 4.5, "Phoenix": 3.0, 
                      "Slightly Stoopid": 4.5, "The Strokes": 4.0, 
                      "Vampire Weekend": 2.0},       

         "Hailey":   {"Broken Bells": 4.0, "Deadmau5": 1.0, 
                      "Norah Jones": 4.0, "The Strokes": 4.0, 
                      "Vampire Weekend": 1.0}, 

         "Jordyn":   {"Broken Bells": 4.5, "Deadmau5": 4.0, "Norah Jones": 5.0, 
                      "Phoenix": 5.0, "Slightly Stoopid": 4.5, 
                      "The Strokes": 4.0, "Vampire Weekend": 4.0}, 

         "Sam":      {"Blues Traveler": 5.0, "Broken Bells": 2.0, 
                      "Norah Jones": 3.0, "Phoenix": 5.0, 
                      "Slightly Stoopid": 4.0,  "The Strokes": 5.0},   

         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0, 
                      "Phoenix": 4.0,  "Slightly Stoopid": 2.5, 
                      "The Strokes": 3.0}}

We can get the ratings of a particular user as follows:

>>> users["Veronica"] 
{"Blues Traveler": 3.0, "Norah Jones": 5.0, "Phoenix": 4.0,  
"Slightly Stoopid": 2.5, "The Strokes": 3.0} 

>>> 

COLLABORATIVE FILTERING
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The code to compute Manhattan distance
I'd like to write a function that computes the Manhattan distance as follows:

def manhattan(rating1, rating2):
   """Computes the Manhattan distance. Both rating1 and rating2 are
   dictionaries of the form
   {'The Strokes': 3.0, 'Slightly Stoopid': 2.5 ..."""
   
   distance = 0
   for key in rating1:
      if key in rating2:
         distance += abs(rating1[key] - rating2[key]) 
   return distance    

To test the function:

>>> manhattan(users['Hailey'], users['Veronica'])

2.0 
>>> manhattan(users['Hailey'], users['Jordyn']) 
7.5 
>>> 

Now a function to find the closest person (actually this returns a sorted list with the closest 
person first):

def computeNearestNeighbor(username, users):
    """creates a sorted list of users based on their distance to
    username"""
    distances = []
    for user in users:
        if user != username:
            distance = manhattan(users[user], users[username])
            distances.append((distance, user))
    # sort based on distance -- closest first
    distances.sort()
    return distances
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And just a quick test of that function:

>>> computeNearestNeighbor("Hailey", users) 
[(2.0, ''Veronica'), (4.0, 'Chan'),(4.0, 'Sam'), (4.5, 'Dan'), (5.0, 
'Angelica'), (5.5, 'Bill'), (7.5, 'Jordyn')] 

Finally, we are going to put this all together to make recommendations. Let's say I want to 
make recommendations for Hailey. I find her nearest neighbor—Veronica in this case. I will 
then find bands that Veronica has rated but Hailey has not. Also, I will assume that Hailey 
would have rated the bands the same as (or at least very similar to)  Veronica.  For example, 
Hailey has not rated the great band Phoenix. Veronica has rated Phoenix a '4' so we will 
assume Hailey is likely to enjoy the band as well. Here is my function to make 
recommendations.

def recommend(username, users):
    """Give list of recommendations"""
    # first find nearest neighbor
    nearest = computeNearestNeighbor(username, users)[0][1]
    recommendations = []
    # now find bands neighbor rated that user didn't
    neighborRatings = users[nearest]
    userRatings = users[username]
    for artist in neighborRatings:
        if not artist in userRatings:
            recommendations.append((artist, neighborRatings[artist]))
    # using the fn sorted for variety - sort is more efficient
    return sorted(recommendations,
                  key=lambda artistTuple: artistTuple[1], 
                  reverse = True)

And now to make recommendations for Hailey:

>>> recommend('Hailey', users) 
[('Phoenix', 4.0), ('Blues Traveler', 3.0), ('Slightly Stoopid', 2.5)]
 
That fits with our expectations. As we saw above, Hailey's nearest neighbor was Veronica and 
Veronica gave Phoenix a '4'. Let's try a few more:

>>> recommend('Chan', users) 

COLLABORATIVE FILTERING
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[('The Strokes', 4.0), ('Vampire Weekend', 1.0)]

>>> recommend('Sam', users) 
[('Deadmau5', 1.0)]

We think Chan will like The Strokes and also predict that Sam will not like Deadmau5.

>>> recommend('Angelica', users) 
[]

Hmm. For Angelica we got back an empty set meaning we have no recommendations for her. 
Let us see what went wrong:

>>> computeNearestNeighbor('Angelica', users) 
[(3.5, 'Veronica'), (4.5, 'Chan'), (5.0, 'Hailey'), (8.0, 'Sam'), (9.0, 
'Bill'), (9.0, 'Dan'), (9.5, 'Jordyn')]

 
Angelica's nearest neighbor is Veronica. When we look at their ratings:

Angelica Bill Chan Dan Hailey Jordyn Sam Veronica
Blues Traveler 3.5 2 5 3 - - 5 3
Broken Bells 2 3.5 1 4 4 4.5 2 -
Deadmau5  - 4 1 4.5 1 4 - -
Norah Jones 4.5 - 3 - 4 5 3 5
Phoenix 5 2 5 3 - 5 5 4
Slightly Stoopid 1.5 3.5 1 4.5 - 4.5 4 2.5
The Strokes 2.5 - - 4 4 4 5 3
Vampire Weekend 2 3 - 2 1 4 - -

We see that Angelica rated every band that Veronica did. We have no new ratings, so no 
recommendations. 

Shortly, we will see how to improve the system to avoid these cases.
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s exercise 

1)  Implement the Minkowski Distance function. 

2) Alter the computeNearestNeighbor function to use Minkowski 
Distance.

COLLABORATIVE FILTERING
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s exercise - solution

1)  Implement the Minkowski Distance function. 

def minkowski(rating1, rating2, r):
    """Computes the Minkowski distance. 
    Both rating1 and rating2 are dictionaries of the form 
    {'The Strokes': 3.0, 'Slightly Stoopid': 2.5}"""
    distance = 0
    commonRatings = False 
    for key in rating1:
        if key in rating2:
            distance += 
                 pow(abs(rating1[key] - rating2[key]), r)
            commonRatings = True
    if commonRatings:
        return pow(distance,  1/r)
    else:
        return 0 #Indicates no ratings in common

2) Alter the computeNearestNeighbor function to use Minkowski Distance.

just need to alter the distance = line to

distance = minkowski(users[user], users[username], 2)

(the 2 as the r argument implements Euclidean)
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Blame the users
Let's take a look at the user ratings in a bit more detail. We see that users have very different 
behaviors when it comes to rating bands

Angelica Bill Chan Dan Hailey Jordyn Sam Veronica
Blues Traveler 3.5 2 5 3 - - 5 3
Broken Bells 2 3.5 1 4 4 4.5 2 -
Deadmau5  - 4 1 4.5 1 4 - -
Norah Jones 4.5 - 3 - 4 5 3 5
Phoenix 5 2 5 3 - 5 5 4
Slightly Stoopid 1.5 3.5 1 4.5 - 4.5 4 2.5
The Strokes 2.5 - - 4 4 4 5 3
Vampire Weekend 2 3 - 2 1 4 - -

COLLABORATIVE FILTERING
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Bill seems to 
avoid the 
extremes. His 
ratings range 
from 2 to 4

Jordyn 
seems to like 
everthing. Her 
ratings range 
from 4 to 5.

Hailey is a binary 
person giving either 1s 
or 4s to bands.



So how do we compare, for example, Hailey to Jordan? Does Hailey's '4' mean the same as 
Jordyn's '4' or Jordyn's '5'?  I would guess it is more like Jordyn's '5'. This variability can 
create problems with a recommendation system.
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love Broken Bells! 
They’re tight! I 
give them a 4.

Broken Bells 
is ok. I’d give 
them a ‘4’.



Pearson Correlation Coefficient
One way to fix this problem is to use the Pearson Correlation Coefficient. First, the general 
idea.  Consider the following data (not from the data set above):

Blues 
Traveler

Norah 
Jones

Phoenix The 
Strokes

Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

This is an example of what is called 'grade inflation' in the data mining community. Clara's 
lowest rating is 4—all her rating are between 4 and 5. If we are to graph this chart it would 
look like

Straight line = Perfect Agreement!!!

3

3.5

4

4.5

5

1 2 3 4 5
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The fact that this is a straight line indicates a perfect agreement between Clara and Robert. 
Both rated Phoenix as the best band, Blues Traveler next, Norah Jones after that, and so on. 
As Clara and Robert agree less, the less the data points reside on a straight line:

Pretty Good Agreement:

Not So Good Agreement:

3

3.5

4

4.5

5

1 2 3 4 5

3

3.5

4

4.5

5

1 2 3 4 5
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So chart-wise, perfect agreement is indicated by a straight line. The Pearson Correlation 
Coefficient is a measure of correlation between two variables (in this specific case the 
correlation between Angelica and Bill). It ranges between -1 and 1 inclusive. 1 indicates 
perfect agreement. -1 indicates perfect disagreement. To give you a general feel for this, the 
chart above with the straight line has a Pearson of 1, the chart above that I labelled ‘pretty 
good agreement’ has a Pearson of 0.91, and the ‘not so good agreement’ chart has a Pearson 
of 0.81 So we can use this to find the individual who is most similar to the person we are 
interested in. 

The formula for the Pearson Correlation Coefficient is

                   r =
(xi − x )(yi − y )i=1

n∑
(xi − x )

2
i=1

n∑ (yi − y )
2

i=1

n∑

h        Arghhhh Math Again!  

Here's a personal confession. I have a Bachelor of Fine 
Arts degree in music. While I have taken courses in 
ballet, modern dance, and costume design, I did not 
have a single math course as an undergrad. Before that, I 
attended an all boys trade high school where I took 
courses in plumbing and automobile repair, but no 
courses in math other than the basics. Either due to this 
background or some innate wiring in my brain, when I 
read a book that has formulas like the one above, I tend 
to skip over the formulas and continue with the text 
below them. If you are like me I would urge you to fight 
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that urge and actually look at the formula. Many formulas that on a quick glimpse look 
complex are actually understandable by mere mortals.

Other than perhaps looking complex, the problem with the formula above is that the 
algorithm to implement it would require multiple passes through the data. Fortunately for us 
algorithmic people, there is an alternative formula, which is an approximation of Pearson:

                        
r =

xiyi −
xii=1

n∑ yii=1

n∑
ni=1

n∑

xi
2

i=1

n∑ −
( xi )

2
i=1

n∑
n

yi
2 −
( yi )

2
i=1

n∑
ni=1

n∑

(Remember what I said two paragraphs above about not skipping over formulas) This 
formula, in addition to looking initially horribly complex is, more importantly, numerically 
unstable meaning that what might be a small error is amplified by this reformulation. The big  
plus is that we can implement it using a single-pass algorithm, which we will get to shortly. 
First, let’s dissect this formula and work through the example we saw a few pages back:

Blues 
Traveler

Norah 
Jones

Phoenix The Strokes Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

To start with, let us compute
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             xiyii=1

n∑

Which is in the first expression in the numerator. Here the x and y represent Clara and 
Robert. 

Blues 
Traveler

Norah 
Jones

Phoenix The Strokes Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

For each band we are going to multiple Clara’s and Robert’s rating together and sum the 
results:

(4.75 × 4)+ (4.5 × 3)+ (5 × 5)+ (4.25 × 2)+ (4 ×1)

= 19 +13.5 + 25 + 8.5 + 4 = 70

Sweet! Now let’s compute the rest of the numerator:

xi yii=1

n∑i=1

n∑
n
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Blues Traveler Norah Jones Phoenix The Strokes Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

So the 

xii=1

n∑

is the sum of Clara’s ratings, which is 22.5.  The sum of Robert’s is 15 and they rated 5 bands:

22.5 ×15
5

= 67.5

So the numerator in the formula on page 26 is 70 - 67.5 = 2.5

Now let’s dissect the denominator. 

xi
2 −
( xi )

2
i=1

n∑
ni=1

n∑

First,

xi
2

i=1

n∑ = (4.75)2 + (4.5)2 + (5)2 + (4.25)2 + (4)2 = 101.875
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We’ve already computed the sum of Clara’s ratings, which is 22.5.  Square that and we get  
506.25. We divide that by the number of co-rated bands (5) and we get 101.25.

Putting that together:

101.875 −101.25 = .625 = .79057

Next we do the same computation for Robert:

yi
2 −
( yi )

2
i=1

n∑
ni=1

n∑ = 55 − 45 = 3.162277

Putting this altogether we get:

r = 2.5
.79057(3.162277)

= 2.5
2.5

= 1.00

So 1 means there was perfect agreement 
between Clara and Robert!

Take a break before moving on!!

COLLABORATIVE FILTERING

2-29



s exercise 

Before going to the next page, implement the algorithm in Python. You 
should get the following results.

>>> pearson(users['Angelica'], users['Bill']) 
-0.90405349906826993 
>>> pearson(users['Angelica'], users['Hailey']) 
0.42008402520840293 
>>> pearson(users['Angelica'], users['Jordyn']) 
0.76397486054754316 
>>> 

For this implementation you will need 2 Python functions sqrt (square 
root) and power operator ** which raises its left argument to the 
power of its right argument:

>>> from math import sqrt 
>>> sqrt(9) 
3.0 
>>> 3**2 
9
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s exercise - solution

Here is my implementation of Pearson

def pearson(rating1, rating2):
    sum_xy = 0
    sum_x = 0
    sum_y = 0
    sum_x2 = 0
    sum_y2 = 0
    n = 0
    for key in rating1:
        if key in rating2:
            n += 1
            x = rating1[key]
            y = rating2[key]
            sum_xy += x * y
            sum_x += x
            sum_y += y
            sum_x2 += x**2
            sum_y2 += y**2
    # if no ratings in common return 0
    if n == 0:
        return 0   
    # now compute denominator
    denominator = sqrt(sum_x2 - (sum_x**2) / n) * 
                  sqrt(sum_y2 - (sum_y**2) / n)
    if denominator == 0:
        return 0
    else:
        return (sum_xy - (sum_x * sum_y) / n) / denominator

COLLABORATIVE FILTERING
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One last formula – Cosine Similarity

I would like to present one last formula, which is very popular in text mining but also used in 
collaborative filtering—cosine similarity. To see when we might use this formula, let’s say I 
change my example slightly. We will keep track of the number of times a person played a 
particular song track and use that information to base our recommendations on.  

number of playsnumber of playsnumber of plays

The Decemberists
The King is Dead

Radiohead
The King of Limbs

Katy Perry
E.T.

Ann 10 5 32

Ben 15 25 1

Sally 12 6 27

Just by eye-balling the above chart (and by using any of the distance formulas mentioned 
above) we can see that Sally is more similar in listening habits to Ann than Ben is. 

So what is the problem?

I have around four thousand tracks in iTunes. Here is a snapshot of the top few ordered by 
number of plays:
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So my top track is Moonlight Sonata by Marcus Miller with 25 plays. Chances are that you 
have played that track zero times. In fact, chances are good that you have not played any of 
my top tracks. In addition, there are over 15 million tracks in iTunes and I have only four 
thousand. So the data for a single person is sparse since it has relatively few non-zero 
attributes (plays of a track). When we compare two people by using the number of plays of 
the 15 million tracks, mostly they will have shared zeros in common.  However, we do not 
want to use these shared zeros when we are computing similarity.

A similar case can be made when we are comparing text 
documents using words. Suppose we liked a certain 
book, say Tom Corbett Space Cadet: The Space Pioneers  
by Carey Rockwell and we want to find a similar book.  
One possible way is to use word frequency. The 
attributes will be individual words and the values of 
those attributes will be the frequency of those words in 
the book. So 6.13% of the words in The Space Pioneers 
are occurrences of the word the, 0.89% are the word 
Tom, 0.25% of the words are space.  I can compute the 
similarity of this book to others by using these word 
frequencies. However, the same problem related to 
sparseness of data occurs here. There are 6,629 
unique words in The Space Pioneers and there are a 
bit over one million unique words in English. So if 
our attributes are English words, there will be 

relatively few non-zero attributes for The Space 
Pioneers or any other book. Again, any measure of similarity should not 

depend on the shared-zero values.

COLLABORATIVE FILTERING

2-33



Cosine similarity ignores 0-0 matches. It is defined as

        cos(x, y) =
x ⋅ y
x × y

where · indicates the dot product and ||x|| indicates the length of the vector x. The length of a  
vector is

  xi
2

i=1

n∑

Let’s give this a try with the perfect agreement example used above:

Blues 
Traveler

Norah 
Jones

Phoenix The Strokes Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

The two vectors are:

                            
x = (4.75,4.5,5,4.25,4)
y = (4,3,5,2,1)

then

         

x = 4.752 + 4.52 + 52 + 4.252 + 42 = 101.875 = 10.09

y = 42 + 32 + 52 + 22 +12 = 55 = 7.416

The dot product is
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x ⋅ y = (4.75 × 4)+ (4.5 × 3)+ (5 × 5)+ (4.25 × 2)+ (4 ×1) = 70

And the cosine similarity is

cos(x, y) = 70
10.093× 7.416

= 70
74.85

= 0.935

The cosine similarity rating ranges from 1 indicated perfect similarity to -1 indicate perfect 
negative similarity. So 0.935 represents very good agreement.

s sharpen your pencil

Compute the Cosine Similarity between Angelica and Veronica (from our 
dataset). (Consider dashes equal to zero)

Blues 
Traveler

Broken 
Bells

Deadmau
5

Norah 
Jones

Phoenix Slightly 
Stoopid

The 
Strokes

Vampire 
Weekend

Angelica 3.5 2 - 4.5 5 1.5 2.5 2

Veronica 3 - - 5 4 2.5 3 -

COLLABORATIVE FILTERING
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s sharpen your pencil - solution

Compute the Cosine Similarity between Angelica and Veronica (from our 
dataset).

Blues 
Traveler

Broken 
Bells

Deadmau
5

Norah 
Jones

Phoenix Slightly 
Stoopid

The 
Strokes

Vampire 
Weekend

Angelica 3.5 2 - 4.5 5 1.5 2.5 2

Veronica 3 - - 5 4 2.5 3 -

x = (3.5,2,0,4.5,5,1.5,2.5,2)
y = (3,0,0,5,4,2.5,3,0)

x = 3.52 + 22 + 02 + 4.52 + 52 +1.52 + 2.52 + 22 = 74 = 8.602

y = 32 + 02 + 02 + 52 + 42 + 2.52 + 32 + 02 = 65.25 = 8.078

The dot product is 

x ⋅ y =
(3.5 × 3)+ (2 × 0)+ (0 × 0)+ (4.5 × 5)+ (5 × 4)+ (1.5 × 2.5)+ (2.5 × 3)+ (2 × 0) = 64.25

Cosine Similarity is

cos(x, y) = 64.25
8.602 × 8.078

= 64.25
69.487

= 0.9246
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Which similarity measure to use?

We will be exploring this question throughout the book. For now, here are a few helpful 
hints:

COLLABORATIVE FILTERING
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If your data is dense 
(almost all attributes have non-
zero values) and the magnitude 
of the attribute values is 
important, use distance 
measures such as Euclidean or 
Manhattan.

If the data is subject to 
grade-inflation (different users 
may be using different scales) 
use Pearson.

If the data is sparse 
consider using Cosine 
Similarity.

Good job, 
guys, nailed it!



So, if the data is dense (nearly all attributes have non-zero values) then Manhattan and 
Euclidean are reasonable to use. What happens if the data is not dense?  Consider an 
expanded music rating system and three people, all of which have rated 100 songs on our 
site:

Linda and Eric enjoy the same kind of music. In fact, among their ratings, they have 20 songs 
in common and the difference in their ratings of those 20 songs (on a scale of 1 to 5) averages 
only 0.5!!  The Manhattan Distance between them would be 20 x .5 = 10. The Euclidean 
Distance would be:

            d = (.5)2 × 20 = .25 × 20 = 5 = 2.236
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Jake: hardcore fan of Country 
Linda and Eric: love, love, love 60s rock!



Linda and Jake have rated only one song in common: Chris Cagle’s What a Beautiful Day. 
Linda thought it was okay and rated it a 3, Jake thought it was awesome and gave it a 5. So 
the Manhattan Distance between Jake and Linda is 2 and the Euclidean Distance is 

          d = (3− 5)2 = 4 = 2

So both the Manhattan and Euclidean Distances show that Jake is a closer match to Linda 
than Eric is.  So in this case both distance measures produce poor results. 

Good idea, but that doesn’t work either. To see why we need to bring in a few more 
characters into our little drama: Cooper and Kelsey. Jake, Cooper and Kelsey have amazingly 
similar musical tastes. Jake has rated 25 songs on our site.

COLLABORATIVE FILTERING
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Hey, I have an idea that 
might fix this problem.

Right now, people rate tunes 
on a scale of 1 to 5. How 
about for the tunes people 
don’t rate I will assume the 
rating is 0. That way we solve 
the problem of sparse data 
as every object has a value 
for every attribute!
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Cooper has rated 26 songs, and 25 of them are 
the same songs Jake rated. They love the same 
kind of music and the average distance in their 
ratings is only 0.25!!

Kelsey loves both music and our site and has 
rated 150 songs. 25 of those songs are the 
same as the ones Cooper and Jake rated. Like 
Cooper, the average distance in her ratings and 
Jake’s is only 0.25!!

Our gut feeling is that Cooper and Kelsey are 
equally close matches to Jake. 

Now consider our modified Manhattan and 
Euclidean distance formulas where we assign a 
0 for every song the person didn’t rate.

With this scheme, Cooper is a much closer 
match to Jake than Kelsey is.

Why?

Cooper

Kelsey



To answer why, let us look at a the following simplified example (again, a 0 means that 
person did not rate that song):

Song: 1 2 3 4 5 6 7 8 9 10

Jake 0 0 0 4.5 5 4.5 0 0 0 0

Cooper 0 0 4 5 5 5 0 0 0 0

Kelsey 5 4 4 5 5 5 5 5 4 4

Again, looking at the songs they mutually rated (songs 4, 5, and 6), Cooper and Kelsey seem 
like equally close matches for Jake.  However, Manhattan Distance using those zero values 
tells a different story:

dCooper ,Jake = (4 − 0)+ (5 − 4.5)+ (5 − 5)+ 5 − 4.5) = 4 + 0.5 + 0 + 0.5 = 5

dKelsey,Jake = (5 − 0)+ (4 − 0)+ (4 − 0)+ (5 − 4.5)+ (5 − 5)+ (5 − 4.5)+ (5 − 0)

                                 +(5 − 0)+ (4 − 0)+ (4 − 0)

                 = 5 + 4 + 4 + 0.5 + 0 + .5 + 5 + 5 + 4 + 4 = 32

The problem is that these zero values tend to dominate any measure of distance.  So the 
solution of adding zeros is no better than the original distance formulas. One workaround 
people have used is to compute—in some sense—an ‘average’ distance where one computes 
the distance by using songs they rated in common divided that by the number of songs they 
rated in common. 

Again, Manhattan and Euclidean work spectacularly well on dense data, but if the data is 
sparse it may be better to use Cosine Similarity.

COLLABORATIVE FILTERING
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Weirdnesses
Suppose we are trying to make recommendations for Amy who loves Phoenix, Passion Pit 
and Vampire Weekend. Our closest match is Bob who also loves Phoenix, Passion Pit, and 
Vampire Weekend. His father happens to play accordion for the Walter Ostanek Band, this 
year's Grammy winner in the polka category. Because of familial obligations, Bob gives 5 
stars to the Walter Ostanek Band. Based on our current recommendation system, we think 
Amy will absolutely love the band. But common sense tells us she probably won't.

Or think of Professor Billy Bob Olivera who loves to read data mining books and science 
fiction. His closest match happens to be me, who also likes data mining books and science 
fiction. However, I like standard poodles and have rated The Secret Lives of Standard 
Poodles highly. Our current recommendation system would likely recommend that book to 
the professor.
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The problem is that we are relying on a single “most similar” person. Any quirk that person 
has is passed on as a recommendation. One way of evening out those quirks is to base our 
recommendations on more than one person who is similar to our user. For this we can use 
the k-nearest neighbor approach. 

K-nearest neighbor 
In the k-nearest neighbor approach to collaborative filtering we use k most similar people to 
determine recommendations. The best value for k is application specific—you will need to do 
some experimentation. Here's an example to give you the basic idea.

Suppose I would like to make recommendations for Ann and am using k-nearest neighbor 
with k=3. The three nearest neighbors and their Pearson scores are shown in the following 
table:
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Person Pearson
Sally 0.8
Eric 0.7
Amanda 0.5

Each of these three people are going to influence the recommendations. The question is how 
can I determine how much influence each person should have. If there is a Pie of Influence™, 
how big a slice should I give each person? If I add up the Pearson scores I get 2. Sally's share 
is 0.8/2 or 40%. Eric's share is 35% (0.7 / 2)  and Amanda's share is 25%.

Suppose Amanda, Eric, and Sally, rated the band, The Grey Wardens as follows

Person Grey Wardens Rating
Amanda 4.5
Eric 5
Sally 3.5
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0.8 + 0.7
 + 0.5 = 

2.0



Person Grey Wardens Rating Influence
Amanda 4.5 25.00%
Eric 5 35.00%
Sally 3.5 40.00%

Projected rating = (4.5 x 0.25) + (5 x 0.35) + (3.5 x 0.4) 

  = 4.275

s sharpen your pencil

Suppose I use the same data as above but use a k-nearest neighbor 
approach with k=2. What is my projected rating for Grey Wardens?

Person Pearson
Sally 0.8
Eric 0.7
Amanda 0.5

Person Grey Wardens Rating
Amanda 4.5
Eric 5
Sally 3.5

COLLABORATIVE FILTERING
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s solution

Person Pearson
Sally 0.8
Eric 0.7
Amanda 0.5

Person Grey Wardens Rating
Amanda 4.5
Eric 5
Sally 3.5

Projected rating = Sally’s portion + Eric’s portion 

  =   (3.5 x (0.8 / 1.5)) + (5 x (0.7 / 1.5))

  = (3.5 x .5333) + (5 x 0.4667)

       = 1.867 + 2.333

  = 4.2
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A Python Recommendation Class
I combined some of what we covered in this chapter in a Python Class. Even though it is 
slightly long I have included the code here (don't forget you can download the code at http://
www.guidetodatamining.com).

import codecs 
from math import sqrt

users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,
                      "Norah Jones": 4.5, "Phoenix": 5.0,
                      "Slightly Stoopid": 1.5,
                      "The Strokes": 2.5, "Vampire Weekend": 2.0},
         
         "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,
                 "Deadmau5": 4.0, "Phoenix": 2.0,
                 "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
         
         "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,
                  "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,
                  "Slightly Stoopid": 1.0},
         
         "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,
                 "Deadmau5": 4.5, "Phoenix": 3.0,
                 "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                 "Vampire Weekend": 2.0},
         
         "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,
                    "Norah Jones": 4.0, "The Strokes": 4.0,
                    "Vampire Weekend": 1.0},
         
         "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0,
                     "Norah Jones": 5.0, "Phoenix": 5.0,
                     "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                     "Vampire Weekend": 4.0},

COLLABORATIVE FILTERING
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         "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,
                 "Norah Jones": 3.0, "Phoenix": 5.0,
                 "Slightly Stoopid": 4.0, "The Strokes": 5.0},
         
         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,
                      "Phoenix": 4.0, "Slightly Stoopid": 2.5,
                      "The Strokes": 3.0}
        }

class recommender:

    def __init__(self, data, k=1, metric='pearson', n=5):
        """ initialize recommender
        currently, if data is dictionary the recommender is initialized
        to it.
        For all other data types of data, no initialization occurs
        k is the k value for k nearest neighbor
        metric is which distance formula to use
        n is the maximum number of recommendations to make"""
        self.k = k
        self.n = n
        self.username2id = {}
        self.userid2name = {}
        self.productid2name = {}
        # for some reason I want to save the name of the metric
        self.metric = metric
        if self.metric == 'pearson':
            self.fn = self.pearson
        #
        # if data is dictionary set recommender data to it
        #
        if type(data).__name__ == 'dict':
            self.data = data
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    def convertProductID2name(self, id):
        """Given product id number return product name"""
        if id in self.productid2name:
            return self.productid2name[id]
        else:
            return id

    def userRatings(self, id, n):
        """Return n top ratings for user with id"""
        print ("Ratings for " + self.userid2name[id])
        ratings = self.data[id]
        print(len(ratings))
        ratings = list(ratings.items())
        ratings = [(self.convertProductID2name(k), v)
                   for (k, v) in ratings]
        # finally sort and return
        ratings.sort(key=lambda artistTuple: artistTuple[1],
                     reverse = True)
        ratings = ratings[:n]
        for rating in ratings:
            print("%s\t%i" % (rating[0], rating[1]))
        

        

    def loadBookDB(self, path=''):
        """loads the BX book dataset. Path is where the BX files are
        located"""
        self.data = {}
        i = 0
        #
        # First load book ratings into self.data
        #
        f = codecs.open(path + "BX-Book-Ratings.csv", 'r', 'utf8')
        for line in f:
            i += 1

COLLABORATIVE FILTERING
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            # separate line into fields
            fields = line.split(';')
            user = fields[0].strip('"')
            book = fields[1].strip('"')
            rating = int(fields[2].strip().strip('"'))
            if user in self.data:
                currentRatings = self.data[user]
            else:
                currentRatings = {}
            currentRatings[book] = rating
            self.data[user] = currentRatings
        f.close()
        #
        # Now load books into self.productid2name
        # Books contains isbn, title, and author among other fields
        #
        f = codecs.open(path + "BX-Books.csv", 'r', 'utf8')
        for line in f:
            i += 1
            # separate line into fields
            fields = line.split(';')
            isbn = fields[0].strip('"')
            title = fields[1].strip('"')
            author = fields[2].strip().strip('"')
            title = title + ' by ' + author
            self.productid2name[isbn] = title
        f.close()
        #
        #  Now load user info into both self.userid2name and
        #  self.username2id
        #
        f = codecs.open(path + "BX-Users.csv", 'r', 'utf8')
        for line in f:
            i += 1
            # separate line into fields
            fields = line.split(';')
            userid = fields[0].strip('"')
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            location = fields[1].strip('"')
            if len(fields) > 3:
                age = fields[2].strip().strip('"')
            else:
                age = 'NULL'
            if age != 'NULL':
                value = location + '  (age: ' + age + ')'
            else:
                value = location
            self.userid2name[userid] = value
            self.username2id[location] = userid
        f.close()
        print(i)
                
        
    def pearson(self, rating1, rating2):
        sum_xy = 0
        sum_x = 0
        sum_y = 0
        sum_x2 = 0
        sum_y2 = 0
        n = 0
        for key in rating1:
            if key in rating2:
                n += 1
                x = rating1[key]
                y = rating2[key]
                sum_xy += x * y
                sum_x += x
                sum_y += y
                sum_x2 += pow(x, 2)
                sum_y2 += pow(y, 2)
        if n == 0:
            return 0
        # now compute denominator
        denominator = (sqrt(sum_x2 - pow(sum_x, 2) / n)
                       * sqrt(sum_y2 - pow(sum_y, 2) / n))
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        if denominator == 0:
            return 0
        else:
            return (sum_xy - (sum_x * sum_y) / n) / denominator

    def computeNearestNeighbor(self, username):
        """creates a sorted list of users based on their distance to
        username"""
        distances = []
        for instance in self.data:
            if instance != username:
                distance = self.fn(self.data[username],
                                   self.data[instance])
                distances.append((instance, distance))
        # sort based on distance -- closest first
        distances.sort(key=lambda artistTuple: artistTuple[1],
                       reverse=True)
        return distances

    def recommend(self, user):
       """Give list of recommendations"""
       recommendations = {}
       # first get list of users  ordered by nearness
       nearest = self.computeNearestNeighbor(user)
       #
       # now get the ratings for the user
       #
       userRatings = self.data[user]
       #
       # determine the total distance
       totalDistance = 0.0
       for i in range(self.k):
          totalDistance += nearest[i][1]
       # now iterate through the k nearest neighbors
       # accumulating their ratings
       for i in range(self.k):
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          # compute slice of pie 
          weight = nearest[i][1] / totalDistance
          # get the name of the person
          name = nearest[i][0]
          # get the ratings for this person
          neighborRatings = self.data[name]
          # get the name of the person
          # now find bands neighbor rated that user didn't
          for artist in neighborRatings:
             if not artist in userRatings:
                if artist not in recommendations:
                   recommendations[artist] = (neighborRatings[artist]
                                              * weight)
                else:
                   recommendations[artist] = (recommendations[artist]
                                              + neighborRatings[artist]
                                              * weight)
       # now make list from dictionary
       recommendations = list(recommendations.items())
       recommendations = [(self.convertProductID2name(k), v)
                          for (k, v) in recommendations]
       # finally sort and return
       recommendations.sort(key=lambda artistTuple: artistTuple[1],
                            reverse = True)
       # Return the first n items
       return recommendations[:self.n]
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A New Dataset
Ok, it is time to look at a more realistic dataset. Cai-Nicolas Zeigler collected over one million  
ratings of books from the Book Crossing website. This ratings are of 278,858 users rating 
271,379 books. This anonymized data is available at http://www.informatik.uni-freiburg.de/
~cziegler/BX/  both as an SQL dump and a text file of comma-separated-values (CSV). I had 
some problems loading this data into Python due to apparent character encoding problems. 
My fixed version of the CSV files are available on this book's website. 

The CSV files represent three tables:

• BX-Users, which, as the name suggests, contains information about the users. There is an 
integer user-id field, as well as the location (i.e., Albuquerque, NM) and age. The names 
have been removed to anonymize the data.

• BX-Books. Books are identified by the ISBN, book title, author, year of publication, and 
publisher.

• BX-Book-Ratings, which includes a user-id, book ISBN, and a rating from 0-10.
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Example of this program executing
First, I will construct an instance of the recommender class with the data  
we previously used:

>>> r = recommender(users)

Some simple examples using these band ratings:

>>> r.recommend('Jordyn') 
[('Blues Traveler', 5.0)] 
>>> r.recommend('Hailey') 
[('Phoenix', 5.0), ('Slightly Stoopid', 4.5)]

http://www.informatik.uni-freiburg.de/~cziegler/BX/
http://www.informatik.uni-freiburg.de/~cziegler/BX/
http://www.informatik.uni-freiburg.de/~cziegler/BX/
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The function loadBookDB in the recommender class loads the data from these files.

Now I am going to load the book dataset. The argument to the loadBookDB function is the 
path to the BX book files.

>>> r.loadBookDB('/Users/raz/Downloads/BX-Dump/') 
1700018

Now I can get recommendations for user 17118, a person from Toronto:

>>> r.recommend('171118') 
[("The Godmother's Web by Elizabeth Ann Scarborough", 10.0), ("The Irrational 
Season (The Crosswicks Journal, Book 3) by Madeleine L'Engle", 10.0), ("The 
Godmother's Apprentice by Elizabeth Ann Scarborough", 10.0), ("A Swiftly 
Tilting Planet by Madeleine L'Engle", 10.0), ('The Girl Who Loved Tom Gordon by 
Stephen King', 9.0), ('The Godmother by Elizabeth Ann Scarborough', 8.0)]

>>> r.userRatings('171118', 5) 
Ratings for toronto, ontario, canada 
2421 
The Careful Writer by Theodore M. Bernstein! 10
Wonderful Life: The Burgess Shale and the Nature of History by Stephen Jay 
Gould! 10
Pride and Prejudice (World's Classics) by Jane Austen! 10
The Wandering Fire (The Fionavar Tapestry, Book 2) by Guy Gavriel Kay! 10
Flowering trees and shrubs: The botanical paintings of Esther Heins by Judith 
Leet! 10 
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Note:
This is a large dataset and may take a bit of time to load on your computer. On my Hackintosh (2.8 GHz i7 860 with 8GB RAM) it takes 24 seconds to load the dataset and 30 seconds to run a query.
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Projects

You won't really learn this material unless you play 
around with the code. Here are some suggestions of 
what you might try.

1. Implement Manhattan distance and Euclidean 
distance and compare the results of these three 
methods.

2. The book website has a file containing movie 
ratings for 25 movies. Create a function that loads 
the data into your classifier. The recommend method 
described above should recommend movies for a 
specific person. 


